Liver X Receptor α Is Involved in Counteracting Mechanical Allodynia by Inhibiting Neuroinflammation in the Spinal Dorsal Horn.

Anesthesiology

From the Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China (J.X., Y.-W.F., W.W., X.-X.Z., X.-H.W., X.-G.L.); Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, People's Republic of China (X.-H.W., X.-G.L.); and Department of Anesthesiology, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, People's Republic of China (L.L.).

Published: September 2017

Background: Liver X receptors, including α and β isoforms, are ligand-activated transcription factors. Whether liver X receptor α plays a role in neuropathic pain is unknown.

Methods: A spared nerve injury model was established in adult male rats and mice. Von Frey tests were performed to evaluate the neuropathic pain behavior; Western blot and immunohistochemistry were performed to understand the underlying mechanisms.

Results: Intrathecal injection of a specific liver X receptor agonist T0901317 or GW3965 could either prevent the development of mechanical allodynia or alleviate the established mechanical allodynia, both in rats and wild-type mice. GW3965 could inhibit the activation of glial cells and the expression of tumor necrosis factor-α (mean ± SD: 196 ± 48 vs. 119 ± 57; n = 6; P < 0.01) and interleukin 1β (mean ± SD: 215 ± 69 vs. 158 ± 74; n = 6; P < 0.01) and increase the expression of interleukin 10 in the spinal dorsal horn. All of the above effects of GW3965 could be abolished by liver X receptor α mutation. Moreover, more glial cells were activated, and more interleukin 1β was released in the spinal dorsal horn in liver X receptor α knockout mice than in wild-type mice after spared nerve injury. Aminoglutethimide, a neurosteroid synthesis inhibitor, blocked the inhibitory effect of T0901317 on mechanical allodynia, on the activation of glial cells, and on the expression of cytokines.

Conclusions: Activation of liver X receptor α inhibits mechanical allodynia by inhibiting the activation of glial cells and rebalancing cytokines in the spinal dorsal horn via neurosteroids.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ALN.0000000000001718DOI Listing

Publication Analysis

Top Keywords

liver receptor
24
mechanical allodynia
20
spinal dorsal
16
dorsal horn
16
glial cells
16
activation glial
12
allodynia inhibiting
8
neuropathic pain
8
spared nerve
8
nerve injury
8

Similar Publications

Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia.

Nat Rev Dis Primers

January 2025

European Reference Network for Rare Multisystemic Vascular Disease (VASCERN), HHT Rare Disease Working Group, Paris, France.

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases.

View Article and Find Full Text PDF

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

Bisphenol A (BPA), an endocrine disruptor, is linked to cancer progression in estrogen-responsive tissues, but its role in promoting colorectal cancer (CRC) progression in the context of obesity remains underexplored. This study examines BPA's influence on CRC in obese Sprague-Dawley rats using network toxicology and experimental models. Computational analysis using the Database for Annotation, Visualization, and Integrated Discovery identified pathways such as "CRC" and "chemical carcinogenesis-receptor activation", implicating the PI3K-AKT pathway in IL-1 beta upregulation and BPA's role in CRC during obesity.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!