Slush-like polar structures in single-crystal relaxors.

Nature

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Published: June 2017

Despite more than 50 years of investigation, it is still unclear how the underlying structure of relaxor ferroelectrics gives rise to their defining properties, such as ultrahigh piezoelectric coefficients, high permittivity over a broad temperature range, diffuse phase transitions, strong frequency dependence in dielectric response, and phonon anomalies. The model of polar nanoregions inside a non-polar matrix has been widely used to describe the structure of relaxor ferroelectrics. However, the lack of precise knowledge about the shapes, growth and dipole patterns of polar nanoregions has led to the characterization of relaxors as "hopeless messes", and no predictive model for relaxor behaviour is currently available. Here we use molecular dynamics simulations of the prototypical Pb(Mg,Nb)O-PbTiO relaxor material to examine its structure and the spatial and temporal polarization correlations. Our simulations show that the unusual properties of relaxors stem from the presence of a multi-domain state with extremely small domain sizes (2-10 nanometres), and no non-polar matrix, owing to the local dynamics. We find that polar structures in the multi-domain state in relaxors are analogous to those of the slush state of water. The multi-domain structure of relaxors that is revealed by our molecular dynamics simulations is consistent with recent experimental diffuse scattering results and indicates that relaxors have a high density of low-angle domain walls. This insight explains the recently discovered classes of relaxors that cannot be described by the polar nanoregion model, and provides guidance for the design and synthesis of new relaxor materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature22068DOI Listing

Publication Analysis

Top Keywords

polar structures
8
structure relaxor
8
relaxor ferroelectrics
8
polar nanoregions
8
non-polar matrix
8
molecular dynamics
8
dynamics simulations
8
multi-domain state
8
relaxors
7
relaxor
5

Similar Publications

Activated Graphite with Richly Oxygenated Surface from Spent Lithium-Ion Batteries for Microwave Absorption.

Small

January 2025

School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.

Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.

View Article and Find Full Text PDF

Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin.

Mater Horiz

January 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.

Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.

View Article and Find Full Text PDF

Framework Nucleic Acid-Based and Neutrophil-Based Nanoplatform Loading Baicalin with Targeted Drug Delivery for Anti-Inflammation Treatment.

ACS Nano

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.

Targeted drug delivery is a promising strategy for treating inflammatory diseases, with recent research focusing on the combination of neutrophils and nanomaterials. In this study, a targeted nanodrug delivery platform (Ac-PGP-tFNA, APT) was developed using tetrahedral framework nucleic acid (tFNA) along with a neutrophil hitchhiking mechanism to achieve precise delivery and anti-inflammatory effects. The tFNA structure, known for its excellent drug-loading capacity and cellular uptake efficiency, was used to carry a therapeutic agent─baicalin.

View Article and Find Full Text PDF

Precisely controlling quantum states is relevant in next-generation quantum computing, encryption, and sensing. Chiral organic chromophores host unique light-matter interactions, which allow them to manipulate the quantized circular polarization of photons. Axially chiral organic scaffolds, such as helicenes or twisted acenes, are powerful motifs in chiral light manipulation.

View Article and Find Full Text PDF

Tuning electronic and optical properties of 2D polymeric C by stacking two layers.

Nanoscale

January 2025

Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J.Thomson Avenue, Cambridge CB3 0HE, UK.

Benefiting from improved stability due to interlayer van der Waals interactions, few-layer fullerene networks are experimentally more accessible compared to monolayer polymeric C. However, there is a lack of systematic theoretical studies on the material properties of few-layer C networks. Here, we compare the structural, electronic and optical properties of bilayer and monolayer fullerene networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!