The Tumor suppressor SMAR1 (scaffold matrix attachment region binding protein 1) has a crucial role in maintaining genomic stability, cell cycle progression and apoptosis.Our previous finding showed that it is highly suppressed in higher grade of cancer. However, the underlying mechanism of this suppression was not well understood. In this study, we show that SMAR1 expression levels are controlled at the proteasomal level by five RING finger E3 ubiquitin ligases including, Cdc20, a substrate receptor of ubiquitin ligase APC/C complex. We found that Cdc20 binds and promotes proteasomal degradation of SMAR1 in a D-box motif dependent manner. Further, our results demonstrated that Cdc20 promotes proteasomal degradation of SMAR1 through K48-linked specific polyubiquitylation, and that short hairpin RNA mediated inactivation of Cdc20 leads to significant stabilization of SMAR1. These findings suggest that Cdc20 is responsible for maintaining the cellular levels of SMAR1. However, since Cdc20 fails to target SMAR1 upon exposure to genotoxic stresses, SMAR1 helps to maintain genomic stability under these conditions through its DNA damage repair activity. Interestingly, Cdc20-mediated degradation of SMAR1 promotes cell migration and invasion.The reciprocal relationship of the duo is evident in breast cancer cell lines as well as in patient samples, suggesting that Cdc20 functions as an important negative regulator of SMAR1 in higher grades of cancer. Our study reveals for the first time, the molecular mechanism associated with lower levels of expression of the important tumor suppressor SMAR1 in higher grades of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520925PMC
http://dx.doi.org/10.1038/cddis.2017.270DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
12
smar1
12
suppressor smar1
12
smar1 higher
12
higher grades
12
degradation smar1
12
cdc20
8
grades cancer
8
genomic stability
8
promotes proteasomal
8

Similar Publications

MT1JP: A Pivotal Tumor-Suppressing LncRNA and its Role in Cancer Progression and Therapeutic Potential.

Curr Drug Targets

January 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Metallothionein 1J pseudogene (MT1JP) is a long non-coding RNA (lncRNA) that functions as a tumor suppressor in various malignancies. Reduced MT1JP expression is associated with increased tumor proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and treatment resistance in nine cancers, such as gastric cancer, intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and breast cancer. Mechanistically, MT1JP acts as a competitive endogenous RNA (ceRNA) to regulate oncogenic microRNAs (miRNAs), including miR-92a-3p, miR-214-3p, and miR-24-3p.

View Article and Find Full Text PDF

With the rapid development of gene editing technology, its application in breast cancer has gradually become the focus of research. This article reviews the application of gene editing technology in the treatment of breast cancer, and discusses its challenges and future development directions. The key application areas of gene editing technology in the treatment of breast cancer will be outlined, including the discovery of new therapeutic targets and the development of drugs related to the pathway.

View Article and Find Full Text PDF

Multi-pathway oxidative stress amplification via controllably targeted nanomaterials for photoimmunotherapy of tumors.

J Nanobiotechnology

January 2025

Yantai Engineering Research Center for Digital Technology of Stomatology, School of Stomatology, Binzhou Medical University, Yantai, 264003, China.

Photoimmunotherapy, which combines phototherapy with immunotherapy, exhibits significantly improved therapeutic effects compared with mono-treatment regimens. However, its use is associated with drawbacks, such as insufficient reactive oxygen species (ROS) production and uneven photosensitizer distribution. To address these issues, we developed a controllable, targeted nanosystem that enhances oxidative stress through multiple pathways, achieving synergistic photothermal, photodynamic, and immunotherapy effects for tumor treatment.

View Article and Find Full Text PDF

Purine-rich element binding protein alpha: a DNA/RNA binding protein with multiple roles in cancers.

Mol Med

January 2025

Nanjing Women and Children's Healthcare Hospital, Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, 123 Tianfei Alley, Mochou Road, Nanjing, China.

Proteins that bind to DNA/RNA are typically evolutionarily conserved with multiple regulatory functions in transcription initiation, mRNA translation, stability of RNAs, and RNA splicing. Therefore, dysregulation of DNA/RNA binding proteins such as purine-rich element binding protein alpha (PURα) disrupts signaling transduction and often leads to human diseases including cancer. PURα was initially recognized as a tumor suppressor in acute myeloid leukemia (AML) and prostate cancer (PC).

View Article and Find Full Text PDF

Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment.

Nat Commun

January 2025

Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!