This paper presents a method of thermal balancing for monolithic power integrated circuits (ICs). An on-chip temperature monitoring sensor that consists of a poly resistor strip in each of multiple parallel MOSFET banks is developed. A temperature-to-frequency converter (TFC) is proposed to quantize on-chip temperature. A pulse-width-modulation (PWM) methodology is developed to balance the channel temperature based on the quantization. The modulated PWM pulses control the hottest of metal-oxide-semiconductor field-effect transistor (MOSFET) bank to reduce its power dissipation and heat generation. A test chip with eight parallel MOSFET banks is fabricated in TSMC 0.25 μm HV BCD processes, and total area is 900 × 914 μm². The maximal temperature variation among the eight banks can reduce to 2.8 °C by the proposed thermal balancing system from 9.5 °C with 1.5 W dissipation. As a result, our proposed system improves the lifetime of a power MOSFET by 20%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5491984PMC
http://dx.doi.org/10.3390/s17061397DOI Listing

Publication Analysis

Top Keywords

monolithic power
8
thermal balancing
8
on-chip temperature
8
parallel mosfet
8
mosfet banks
8
temperature
5
ldmos channel
4
channel thermometer
4
thermometer based
4
based thermal
4

Similar Publications

The performance of narrow-bandgap (NBG) perovskite solar cells (PSCs) is limited by the severe nonradiative recombination and carrier transport barrier at the electron selective interface. Here, we reveal the importance of the molecular orientation for effective defect passivation and protection for Sn at the perovskite/C interface. We constructed an internally self-anchored dual-passivation (ISADP) layer, where the orientation of PCBM can be significantly enhanced by the interaction between ammonium and carbonyl groups.

View Article and Find Full Text PDF

Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.

View Article and Find Full Text PDF

Erbium-doped thin-film lithium niobate (TFLN) lasers have attracted great interest in recent years due to their compatibility with high-speed electro-optic (EO) modulation on the same platform. In this work, high-efficiency single-mode erbium-doped microring lasers with milliwatt output powers were demonstrated. Monolithic lithium niobate microring resonators using pulley-waveguide-coupling were fabricated by the photolithography assisted chemo-mechanical etching (PLACE) technique.

View Article and Find Full Text PDF

"Bridge" interface design modulates high-performance cellulose-based integrated flexible supercapacitors.

Int J Biol Macromol

December 2024

School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; Hubei Key Laboratory of Automotive Power Train and Electronic control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China; Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:

Flexible supercapacitors offer significant potential for powering next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexibility conditions is limited by the weak bonding between neighboring layers, posing a major obstacle to their practical application. In this paper, natural coniferous pulp cellulose was successfully modified with ethylenediamine and NiSe/Cell-NH/MoS cellulose flexible electrodes (NCMF) were fabricated by phase transfer and hydrothermal methods.

View Article and Find Full Text PDF

Aromatic linker-constructed self-assembled monolayers (Ar-SAMs) with enlarged dipole moment can modulate the work function of indium tin oxide (ITO), thereby improving hole extraction/transport efficiency. However, the specific role of the aromatic linkers between the polycyclic head and the anchoring groups of SAMs in determining the performance of perovskite solar cells (PSCs) remains unclear. In this study, we developed a series of phenothiazine-based Ar-SAMs to investigate how different aromatic linkers could affect molecular stacking, the regulation of substrate work function, and charge carrier dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!