Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials. Following oral exposure, AgNPs can accumulate in various organs including kidneys where they show gender specific accumulation. There is limited information on their effect on renal system following long-term animal exposure especially at the ultramicroscopic and molecular level. In this study, we have assessed the effect of 60 days oral AgNPs treatment on kidneys of female Wistar rats at doses of 50 ppm and 200 ppm that are below previously reported lowest observed adverse effect level (LOAEL). AgNPs treatment led to decrease in kidney weight and some loss of renal function as seen by increased levels of serum creatinine and early toxicity markers such as KIM-1, clusterin and osteopontin. We also observed significant mitochondrial damage, loss of brush border membranes, pronounced swelling of podocytes and degeneration of their foot processes using transmission electron microscopy (TEM). These symptoms are similar to those seen in nephrotic syndrome and 'Minimal change disease' of kidney where few changes are visible under light microscopy but significant ultrastructural damage is observed. Prolonged treatment of AgNPs also led to the activation of cell proliferative, survival and proinflammatory factors (Akt/mTOR, JNK/Stat and Erk/NF-κB pathways and IL1β, MIP2, IFN-γ, TNF-α and RANTES) and dysfunction of normal apoptotic pathway. Our study shows how long term AgNPs exposure may promote ultrastructural damage to kidney causing inflammation and expression of cell survival factors. These changes, in the long term, could lead to inhibition of the beneficial apoptotic pathway and promotion of necrotic cell death in kidneys.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17435390.2017.1343874DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
necrotic cell
8
cell death
8
agnps treatment
8
ultrastructural damage
8
apoptotic pathway
8
long term
8
agnps
6
oral subchronic
4
exposure
4

Similar Publications

We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability.

View Article and Find Full Text PDF

Rhazya stricta, a perennial shrub native to the Middle East and South Asia, has been used in traditional medicine for various therapeutic purposes, including antimicrobial action. The current study aimed to compare the antifungal properties of 96% and 50% ethanolic extracts of R. stricta leaves and their biogenic silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Salinity stress adversely affects wheat growth and productivity, necessitating effective mitigation strategies. This study investigates the combined impact of ascorbic acid (AsA), silver nanoparticles (NPs), and Salvadora oleoides aqueous leaf extract (LE) on wheat tolerance to salinity stress. A randomized complete design (RCD) was employed with fourteen treatments: T1 (5 mM AsA), T2 (10 mM AsA), T3 (20 ppm AgNPs), T4 (40 ppm AgNPs), T5 (5% S.

View Article and Find Full Text PDF

Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.

View Article and Find Full Text PDF

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!