A novel synthesis of unsymmetrical aryl sulfides, which requires no transition metal catalyst and no oxidant, was developed. This base-promoted cross-coupling reaction proceeded using arylhydrazines and 1 equiv amount of disulfides under inert gas conditions to afford the unsymmetrical aryl sulfides in good yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b00767 | DOI Listing |
Org Lett
January 2025
School of Chemistry, University of Hyderabad, Gachibowli, Telangana 500046, India.
BMC Chem
January 2025
The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou, 341000, Jiangxi, People's Republic of China.
Angew Chem Int Ed Engl
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India.
Chiral allylamines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allylamines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFMolecules
December 2024
Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070386, Chile.
Organic compounds with 1,3-diketone or 3-amino enone functional groups are extremely important as they can be converted into a plethora of carbo- or heterocyclic derivatives or can be used as ligands in the formation of metal complexes. Here, we have achieved the preparation of a series of non-symmetrical β-ketoenamines (O,N,N proligand) of the type (4-MeOCH)C(=O)CH=C(R)NH(Q) obtained through the Schiff base condensation of 1,3-diketones (1-anisoylacetone, 1-anisyl-3-(4-cyanophenyl)-1,3-propanedione, and 1-anisyl-3-(4,4,4-trifluorotolyl)-1,3-propanedione) functionalized with electron donor and electron-withdrawing substituents and 8-aminoquinoline (R = CH, 4-CHCN, 4-CHCF; Q = CHN). Schiff base ketoimines with a pendant quinolyl moiety were isolated as single regioisomers in yields of 22-56% and characterized with FT-IR, H NMR, and UV-visible spectroscopy, as well as single-crystal X-ray crystallography, which allowed for the elucidation of the nature of the isolated regioisomers.
View Article and Find Full Text PDFChemistry
December 2024
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
Pd-catalyzed alkoxycarbonylation of internal alkynes provides a straightforward access to α,β-disubstituted acrylic esters. Compared with the well-established regioselective alkoxycarbonylation of terminal alkynes, the regioselective hydrocarboxylation of non-functionalized unsymmetric internal alkynes was more challenging owing to the delicate differences of properties between the two substituents. Herein, by using either monophosphine ligand based on 2,3-dihydrobenzo[d][1,3]oxaphosphole motif or bidentate ligand Ph-Phox, the regioselective alkoxycarbonylations of aryl-aryl, aryl-alkyl and alkyl-alkyl disubstituted alkynes were achieved, giving a diversity of trisubstituted α,β-unsaturated carboxylic esters with moderate to excellent yields and high regioselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!