Minimizing Bias in Virally Seeded Water Treatment Studies: Evaluation of Optimal Bacteriophage and Mammalian Virus Preparation Methodologies.

Food Environ Virol

Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

Published: December 2017

One key assumption impacting data quality in viral inactivation studies is that reduction estimates are not altered by the virus seeding process. However, seeding viruses often involves the inadvertent addition of co-constituents such as cell culture components or additives used during preparation steps which can impact viral reduction estimates by inducing non-representative oxidant demand in disinfection studies and fouling in membrane assessments. The objective of this study was therefore to characterize a mammalian norovirus surrogate, murine norovirus (MNV), and bacteriophage MS2 at sequential stages of viral purification and to quantify their potential contribution to artificial oxidant demand and non-representative membrane fouling. Our results demonstrate that seeding solvent extracted and 0.1 micron filtered MNV to ~10 PFU/mL in an experimental water matrix will result in additional total organic carbon (TOC) and 30 min chlorine demand of 39.2 mg/L and 53.5 mg/L as Cl, respectively. Performing sucrose cushion purification on the MNV stock prior to seeding reduces the impacts of TOC and chlorine demand to 1.6 and 0.15 mg/L as Cl, respectively. The findings for MNV are likely relevant for other mammalian viruses propagated in serum-based media. Thus, advanced purification of mammalian virus stocks by sucrose cushion purification (or equivalent density-based separation approach) is warranted prior to seeding in water treatment assessments. Studies employing bacteriophage MS2 as a surrogate virus may not need virus purification, since seeding MS2 at a concentration of ~10 PFU/mL will introduce only ~1 mg/L of TOC and ~1 mg/L as Cl of chlorine demand to experimental water matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12560-017-9307-3DOI Listing

Publication Analysis

Top Keywords

chlorine demand
12
water treatment
8
mammalian virus
8
reduction estimates
8
oxidant demand
8
bacteriophage ms2
8
experimental water
8
sucrose cushion
8
cushion purification
8
prior seeding
8

Similar Publications

Tumor-targeted nanosystem with hypoxia inducible factor 1α inhibition for synergistic chemo-photodynamic therapy against hypoxic tumor.

Colloids Surf B Biointerfaces

December 2024

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT.

View Article and Find Full Text PDF

Algae-laden brackish water (ABW) has remarkably threatened drinking water safety in warm coastal areas. Although gravity-driven ceramic membrane filtration (GDCM) exhibits high potential in ABW treatment during decentralized water supply, membrane fouling is still a critical problem. Herein, GDCM was skillfully electro-functionalized (EGDCM) by in-situ electro-oxidation (ISEO) based on self-fabricated Ti/SnO-Sb dimensionally stable anode (DSA) (EO-EGDCM) and ex-situ electro-coagulation (ESEC) based on iron anode (EC-EGDCM) in this study.

View Article and Find Full Text PDF

Initiators for Continuous Activator Regeneration (ICAR) Depolymerization.

J Am Chem Soc

December 2024

Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland.

Chemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration.

View Article and Find Full Text PDF

The first-coordination sphere of catalysts is known to play a crucial role in reaction mechanisms, but details of how equatorial ligands influence the reactivity remain unknown. Heteroatom ligated to the equatorial position of iron centers in nonheme iron metalloenzymes modulates structure and reactivity. To investigate the impact of equatorial heteroatom substitution on chlorite oxidation, we synthesized and characterized three novel mononuclear nonheme iron(II) complexes with a pentadentate bispidine scaffold.

View Article and Find Full Text PDF

In situ evolved high-valence Co active sites enable highly efficient and stable chlorine evolution reaction.

J Colloid Interface Sci

December 2024

Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University, Chongqing 401331, China. Electronic address:

The chlor-alkali process is crucial in the modern chemical industry, yet it is highly energy-intensive, consuming about 4 % of global electricity due to the significant overpotential and low selectivity of existing chlorine evolution reaction (CER) electrocatalysts. Although advanced electrocatalysts have reduced the energy demands of the chlor-alkali process, they typically incorporate precious metals. Here, we introduce a novel precious metal-free electrocatalyst, (CoZn)VO@C, with a hollow nanocube structure that exhibits outstanding CER performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!