Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrochemical grinding (ECG) is a low-cost and highly efficient process for application to difficult-to-machine materials. In this process, the electrolyte supply mode directly affects machining stability and efficiency. This paper proposes a flow channel structure for an abrasive tool to be used for inner-jet ECG of GH4169 alloy. The tool is based on a dead-end tube with electrolyte outlet holes located in the sidewall. The diameter and number of outlet holes are determined through numerical simulation with the aim of achieving uniform electrolyte flow in the inter-electrode gap. Experiments show that the maximum feed rate and material removal rate are both improved by increasing the diamond grain size, applied voltage, electrolyte temperature and pressure. For a machining depth of 3 mm in a single pass, a feed rate of 2.4 mm min is achieved experimentally. At this feed rate and machining depth, a sample is produced along a feed path under computer numerical control, with the feed direction changing four times. Inner-jet ECG with the proposed abrasive tool shows good efficiency and flexibility for processing hard-to-cut metals with a large removal depth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471189 | PMC |
http://dx.doi.org/10.1038/s41598-017-03770-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!