Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0885328217713354 | DOI Listing |
J Tissue Eng
September 2024
Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and School of Stomatology, Capital Medical University, Beijing, China.
Medicina (Kaunas)
July 2024
Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
Favorable short- and mid-term results for hydroxyapatite (HA)-tricalcium phosphate (TCP)-coated total hip arthroplasty (THA) (Trilogy/Zimmer) have been reported in the literature; however, the long-term results beyond 15 years have not been documented. Therefore, this study evaluated the long-term postoperative results, radiological bone changes, and implant fixation of the acetabular component of HA-TCP-coated THA. This is a retrospective cohort study of 212 patients who underwent primary HA-TCP-coated THA (Trilogy/Zimmer) at our institution between 1 October 2002, and 31 March 2008; 166 who were available for follow-up at least 15 years postoperatively were included (capture rate: 78.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
June 2024
Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The integration of precision medicine principles into bone tissue engineering has ignited a wave of research focused on customizing intricate scaffolds through advanced 3D printing techniques. Bioceramics, known for their exceptional biocompatibility and osteoconductivity, have emerged as a promising material in this field. This article aims to evaluate the regenerative capabilities of a composite scaffold composed of 3D-printed gelatin combined with hydroxyapatite/tricalcium phosphate bioceramics (G/HA/TCP), incorporating human dental pulp-derived stem cells (hDPSCs).
View Article and Find Full Text PDFMater Today Bio
April 2024
College of Stomatology, Chongqing Medical University, Chongqing, China.
Background: Human-treated dentin matrix (hTDM) has recently been studied as a natural extracellular matrix-based biomaterial for dentin pulp regeneration. However, porcine-treated dentin matrix (pTDM) is a potential alternative scaffold due to limited availability. However, there is a dearth of information regarding the protein composition and underlying molecular mechanisms of pTDM.
View Article and Find Full Text PDFHeliyon
January 2024
Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea.
Aims: The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!