Previously, we showed that corticotrophin-releasing hormone immunoreactive (CRH-IR) neurones in a septal structure are associated with stress and the hypothalamic-pituitary-adrenal axis in birds. In the present study, we focused upon CRH-IR neurones located within the septal structure called the nucleus of the hippocampal commissure (NHpC). Immunocytochemical and gene expression analyses were used to identify the anatomical and functional characteristics of cells within the NHpC. A comparative morphometry analysis showed that CRH-IR neurones in the NHpC were significantly larger than CRH-IR parvocellular neurones in the paraventricular nucleus of the hypothalamus (PVN) and lateral bed nucleus of the stria terminalis. Furthermore, these large neurones in the NHpC usually have more than two processes, showing characteristics of multipolar neurones. Utilisation of an organotypic slice culture method enabled testing of how CRH-IR neurones could be regulated within the NHpC. Similar to the PVN, CRH mRNA levels in the NHpC were increased following forskolin treatment. However, dexamethasone decreased forskolin-induced CRH gene expression only in the PVN and not in the NHpC, indicating differential inhibitory mechanisms in the PVN and the NHpC of the avian brain. Moreover, immunocytochemical evidence also showed that CRH-IR neurones reside in the NHpC along with the vasotocinergic system, comprising arginine vasotocin (AVT) nerve terminals and immunoreactive vasotocin V1a receptors (V1aR) in glia. Hence, we hypothesised that AVT acts as a neuromodulator within the NHpC to modulate activity of CRH neurones via glial V1aR. Gene expression analysis of cultured slices revealed that AVT treatment increased CRH mRNA levels, whereas a combination of AVT and a V1aR antagonist treatment decreased CRH mRNA expression. Furthermore, an attempt to identify an intercellular mechanism in glial-neuronal communication in the NHpC revealed that brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) could be involved in the signalling mechanism. Immunocytochemical results further showed that both BDNF and TrkB receptors were found in glia of the NHpC. Interestingly, in cultured brain slices containing the NHpC, the use of a selective TrkB antagonist decreased the AVT-induced increase in CRH gene expression levels. The results from the present study collectively suggest that CRH neuronal activity is modulated by AVT via V1aR involving BDNF and TrkB glia in the NHpC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jne.12494DOI Listing

Publication Analysis

Top Keywords

crh-ir neurones
20
gene expression
16
nhpc
14
crh mrna
12
neurones
10
anatomical functional
8
corticotrophin-releasing hormone
8
neurones septal
8
avian brain
8
v1a receptors
8

Similar Publications

We examined neuronal responses of hypothalamic melanin-concentrating hormone (MCH) and corticotropin-releasing hormone (CRH) to background color in the self-fertilizing fish, Kryptolebias marmoratus. Fish were individually reared in lidless white or black cylindrical plastic containers for 15 days. The number of MCH-immunoreactive (ir) cell bodies in the nucleus lateralis tuberis (NLT) of the hypothalamus was significantly greater in the white-acclimated fish, while no significant differences were observed in the nucleus anterior tuberis (NAT) of the hypothalamus.

View Article and Find Full Text PDF

Full regeneration of descending corticotropin-releasing hormone axons after a complete spinal cord injury in lampreys.

Comput Struct Biotechnol J

October 2022

Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

Sea lampreys are a vertebrate model of interest for the study of spontaneous axon regeneration after spinal cord injury (SCI). Axon regeneration research in lampreys has focused on the study of giant descending neurons, but less so on neurochemically-distinct descending neuronal populations with small caliber axons. Corticotropin-releasing hormone (CRH) is a neuropeptide that regulates the stress response or locomotion.

View Article and Find Full Text PDF

Different oxytocin and corticotropin-releasing hormone system changes in bipolar disorder and major depressive disorder patients.

EBioMedicine

October 2022

Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS key laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, China. Electronic address:

Background: Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus (PVN). Central CRH may cause depression-like symptoms, while peripheral higher OXT plasma levels were proposed to be a trait marker for bipolar disorder (BD). We aimed to investigate differential OXT and CRH expression in the PVN and their receptors in prefrontal cortex of major depressive disorder (MDD) and BD patients.

View Article and Find Full Text PDF

Effects of crowding stress on the hypothalamo-pituitary-interrenal axis of the self-fertilizing fish, Kryptolebias marmoratus.

Comp Biochem Physiol A Mol Integr Physiol

February 2022

Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan.

We tested whether crowding stress affects the hypothalamo-pituitary-interrenal (HPI) axis of the self-fertilizing fish, Kryptolebias marmoratus, which is known to be aggressive in the laboratory conditions but sometimes found as a group from a single land crab burrow in the wild. The projection of corticotropin-releasing hormone (CRH) neurons to the adrenocorticotropic hormone (ACTH) cells in the pituitary was confirmed by dual-label immunohistochemistry; CRH-immunoreactive (ir) fibers originating from cell bodies located in the lateral tuberal nucleus (NLT) of the hypothalamus were observed to project to ACTH-ir cells in the rostral pars distalis of the pituitary. Then, fish were reared solitary or in pairs for 14 days, and the number of CRH-ir cell bodies in the NLT of the hypothalamus and cortisol levels in the body without head region were compared.

View Article and Find Full Text PDF

Previously, we showed that corticotrophin-releasing hormone immunoreactive (CRH-IR) neurones in a septal structure are associated with stress and the hypothalamic-pituitary-adrenal axis in birds. In the present study, we focused upon CRH-IR neurones located within the septal structure called the nucleus of the hippocampal commissure (NHpC). Immunocytochemical and gene expression analyses were used to identify the anatomical and functional characteristics of cells within the NHpC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!