PLoS One
Department of Plastic and Aesthetic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Published: September 2017
Organ regeneration is becoming a promising choice for many patients; however, many details about the mechanisms underlying organ regeneration remain unknown. As regenerative organs, hair follicles offer a good model to study the mechanisms associated with regenerative medicine. The relevant studies have mainly focused on donor cells, and there are no systematic studies involving the effect of host factors on hair follicle reconstruction. Thus, we intend to explore the effect of host cells on hair follicle reconstruction. Epidermal and dermal cells from red fluorescent protein (RFP) transgenic newborn mice were injected into green fluorescent protein (GFP) transgenic mice. In addition, we wrapped the mixed dermal and epidermal cells from GFP transgenic and RFP transgenic mice by the Cell-in-a-Box kit to form "capsules," so that the cells within would be isolated from host cells. These capsules were cultured in vitro and transplanted in vivo. Fully developed reconstructed hair follicles were observed after the injection of mixed cells. These reconstructed follicles mainly consisted of donor cells, as well as a small number of host cells. The encapsulated cells gradually aggregated into cell spheres in vitro without apparent differentiation towards hair follicles. With respect to the transplanted capsules, concentric circle structures were observed, but no hair follicles or hair shafts formed. When the concentric circle structures were transplanted in vivo, mature hair follicles were observed 30 days later. Host cells were found in the reconstructed hair follicles. Thus, we conclude that host cells participate in the process of hair follicle reconstruction, and they play a vital role in the process, especially for the maturation of reconstructed hair follicles. Furthermore, we established a special hair follicle reconstruction system with the help of capsules: transplant cells were isolated from host, but other factors from host could exchange with cells inside.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470686 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179279 | PLOS |
J Dermatol
January 2025
Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
Alopecia areata (AA) is a chronic, autoimmune skin disease characterized by non-scarring hair loss. Baricitinib, a Janus kinase inhibitor (JAKi), prevents hair loss and promotes hair regrowth by inhibiting the inflammatory Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway involved in cytotoxic T cell responses targeting hair follicles. The introduction of JAKi has transformed treatment against severe AA.
View Article and Find Full Text PDFPublic health alarm concerning the emerging fungus is fueled by its antifungal drug resistance and propensity to cause deadly outbreaks. Persistent skin colonization drives transmission and lethal sepsis although its basis remains mysterious. We compared the skin colonization dynamics of with its relative , quantifying skin fungal persistence and distribution and immune composition and positioning.
View Article and Find Full Text PDFInt J Pharm
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 51006 China. Electronic address:
Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33133, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.