Sorbus pohuashanensis is a native tree species of northern China that is used for a variety of ecological purposes. The species is often grown as an ornamental landscape tree because of its beautiful form, silver flowers in early summer, attractive pinnate leaves in summer, and red leaves and fruits in autumn. However, development and further utilization of the species are hindered by the lack of comprehensive genetic information, which impedes research into its genetics and molecular biology. Recent advances in de novo transcriptome sequencing (RNA-seq) technology have provided an effective means to obtain genomic information from non-model species. Here, we applied RNA-seq for sequencing S. pohuashanensis leaves and obtained a total of 137,506 clean reads. After assembly, 96,213 unigenes with an average length of 770 bp were obtained. We found that 64.5% of the unigenes could be annotated using bioinformatics tools to analyze gene function and alignment with the NCBI database. Overall, 59,089 unigenes were annotated using the Nr database(non-redundant protein database), 35,225 unigenes were annotated using the GO (Gene Ontology categories) database, and 33,168 unigenes were annotated using COG (Cluster of Orthologous Groups). Analysis of the unigenes using the KEGG (Kyoto Encyclopedia of Genes and Genomes) database indicated that 13,953 unigenes were involved in 322 metabolic pathways. Finally, simple sequence repeat (SSR) site detection identified 6,604 unigenes that included EST-SSRs and a total of 7,473 EST-SSRs in the unigene sequences. Fifteen polymorphic SSRs were screened and found to be of use for future genetic research. These unigene sequences will provide important genetic resources for genetic improvement and investigation of biochemical processes in S. pohuashanensis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470691 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179219 | PLOS |
Curr Issues Mol Biol
November 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100875, China.
The Rose grain aphid, a notable agricultural pest, releases saliva while feeding. Yet, there is a need for a comprehensive understanding of the specific identity and role of secretory proteins released during probing and feeding. Therefore, a combined transcriptomic and proteomic approach was employed in this study to identify putative secretory proteins.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Landscape Architecture and Art, Northwest A&F University, Yangling, China.
Mast. is a rare and threatened species of evergreen coniferous tree in China, commonly facing issues such as damaged seeds, abnormal seed growth, and empty seed shells. These abnormalities vary by location; unfortunately, the reasons behind these inconsistencies are completely unknown.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou 510640, China.
is a rare and precious medicinal and ornamental plant of Orchidaceae. Abundant morphological characteristics have been observed among cultivated accessions. Our understanding of the genetic basis of morphological diversity is limited due to a lack of sequence data and candidate genes.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:
Aeromonas salmonicida belongs to the Aeromonas family, which could widely infect economic fish, causing diseases and huge economic losses. Recently, A. salmonicida was also detected in diseased Odontobutis potamophila.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!