The design of an energy-harvesting unit with superior output characteristics, i.e., high power density, is a great technological challenge in the present time. Here, simple, lightweight, flexible, and cost-effective piezoelectric nanogenerators (PENGs) have been fabricated by integrating the aluminum electrodes onto Er/Fe stimulated electroactive, visible-light-emitting, and large dielectric PVDF films in which ErCl·6HO and Fe(NO)·9HO act as the catalytic agents for electroactive β polymorph nucleation and the enhancement of dielectric properties. The developed PENGs exhibit excellent energy-harvesting performance with very high power density and very fast charging ability compared with the previously reported PVDF-assisted prototype nanogenerators. The PENGs lead to very large power density (∼160 and ∼55.34 mW cm) under periodic finger imparting for Er- and Fe-stimulated PVDF-film-based energy-harvester units, respectively. The fabricated self-powered PENG is also able to light up 54 commercially available light-emitting diodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b08008DOI Listing

Publication Analysis

Top Keywords

power density
16
er/fe stimulated
8
stimulated electroactive
8
piezoelectric nanogenerators
8
high power
8
nanogenerators pengs
8
electroactive visible
4
visible light
4
light emitting
4
emitting high
4

Similar Publications

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.

View Article and Find Full Text PDF

A self-sustained moist-electric generator with enhanced energy density and longevity through a bilayer approach.

Mater Horiz

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

Although MEG is being developed as a green renewable energy technology, there remains significant room for improvement in self-sustained power supply, generation duration, and energy density. In this study, we present a self-sustained, high-performance MEG device with a bilayer structure. The lower hydrogel layer incorporates graphene oxide (GO) and carbon nanotubes (CNTs) as the active materials, whereas the upper aerogel layer is comprised of pyrrole-modified graphene oxide (PGO).

View Article and Find Full Text PDF

Dual functional coordination interactions enable fast polysulfide conversion and robust interphase for high-loading lithium-sulfur batteries.

Mater Horiz

January 2025

National local joint engineering research center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Batteries Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

The stable operation of high-capacity lithium-sulfur batteries (LSBs) has been hampered by slow conversion kinetics of lithium polysulfides (LiPSs) and instability of the lithium metal anodes. Herein, 6-(dibutylamino)-1,3,5-triazine-2,4-thiol (DTD) is introduced as a functional additive for accelerating the kinetics of cathodic conversion and modulating the anode interface. We proposed that a coordination interaction mechanism drives the polysulfide conversion and modulates the Li solvated structure during the binding of the N-active site of DTD to LiPSs and lithium salts.

View Article and Find Full Text PDF

The optimized composition and precisely tailored structure configuration play critical roles in enhancing the catalytic reaction kinetics. Here we report a distinctive core@satellite strategy for designing the advanced platinum-nickel@platinum-nickel-copper-cobalt-indium high-entropy alloy nanowires (PtNi@HEA NWs) as efficient bifunctional catalysts in the proton exchange membrane fuel cell. Impressively, the PtNi@HEA NWs/C shows 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!