Organic solids such as covalent organic frameworks (COFs), porous polymers and carbon nitrides have garnered attention as a new generation of photocatalysts that offer tunability of their optoelectronic properties both at the molecular level and at the nanoscale. Owing to their inherent porosity and well-ordered nanoscale architectures, COFs are an especially attractive platform for the rational design of new photocatalysts for light-induced hydrogen evolution. In this report, our previous design strategy of altering the nitrogen content in an azine-linked COF platform to tune photocatalytic hydrogen evolution is extended to a pyridine-based photocatalytically active framework, where nitrogen substitution in the peripheral aryl rings reverses the polarity compared to the previously studied materials. We demonstrate how simple changes at the molecular level translate into significant differences in atomic-scale structure, nanoscale morphology and optoelectronic properties, which greatly affect the photocatalytic hydrogen evolution efficiency. In an effort to understand the complex interplay of such factors, we carve out the conformational flexibility of the PTP-COF precursor and the vertical radical anion stabilization energy as important descriptors to understand the performance of the COF photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7fd00051k | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.
View Article and Find Full Text PDFMolecules
January 2025
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China.
Water electrolysis is a promising path to the industrialization development of hydrogen energy. The exploitation of high-efficiency and inexpensive catalysts become important to the mass use of water decomposition. Ni-based nanomaterials have exhibited great potential for the catalysis of water splitting, which have attracted the attention of researchers around the world.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, Faculty of Natural Sciences, Kazakh National Women's Teacher Training University, Gogol 114/1, Almaty 050000, Kazakhstan.
This article presents the synthesis, electrophysical, and catalytic properties of a LaMnO-LaFeO nanocomposite material. The nanocomposite was synthesized via the sol-gel (Pechini) method. X-ray diffraction (XRD) analysis revealed a polycrystalline, biphasic perovskite structure combining both hexagonal and cubic symmetry.
View Article and Find Full Text PDFMolecules
December 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
Catalyzing hydrogen evolution reaction (HER) is a key process in high-efficiency proton exchange membrane water electrolysis (PEMWE) devices. To replace the use of Pt-based HER catalyst, tungsten carbide (WC) is one of the most promising non-noble-metal-based catalysts with low cost, replicable catalytic performance, and durability. However, the preparation access to scalable production of WC catalysts is inevitable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!