We have previously shown that neural precursor cell-expressed developmentally downregulated gene 4-2 (Nedd4-2) isoforms with a C2 domain are closely related to ubiquitination of epithelial sodium channel (ENaC), resulting in salt-sensitive hypertension by Nedd4-2 C2 targeting in mice. The sodium voltage-gated channel alpha subunit 5 () gene encodes the α subunit of the human cardiac voltage-gated sodium channel (I Na), and the potassium voltage-gated channel subfamily H member 2 () gene encodes rapidly activating delayed rectifier K channels (I Kr). Both ion channels have also been shown to bind to Nedd4-2 via a conserved Proline-Tyrosine (PY) motif in C-terminal with subsequent ubiquitination and degradation by proteasome. Therefore, loss of Nedd4-2 C2 isoform might be involved in electrophysiological impairment under various conditions. We demonstrate here that Nedd4-2 C2 isoform causes cardiac conduction change in resting condition as well as proarrhythmic change after acute myocardial infarction (MI). The Nedd4-2 C2 knockout (KO) mice showed bradycardia, prolonged QRS, QT intervals, and suppressed PR interval in resting condition. In addition, enhancement of T peak/T end interval was found in mice with surgical ligation of the distal left coronary artery. Morphological analyses based on both ultrasonography of the living heart, as well as histopathological findings revealed that Nedd4-2 C2 KO mice show no significant structural changes from wild-type littermates under resting conditions. These results suggested that Nedd4-2 with C2 domain might play an important role in cardio-renal syndrome through post-transcriptional modification of both ENaC and cardiac ion channels, which are critical for kidney and heart functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486090 | PMC |
http://dx.doi.org/10.3390/ijms18061268 | DOI Listing |
Epilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFJ Clin Invest
December 2024
The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Various factors play key roles in maintaining intestine homeostasis. Disruption of the balance may lead to intestinal inflammatory diseases (IBDs) and even colorectal cancer (CRC). Loss or gain of function of many key proteins can result in dysregulated intestinal homeostasis.
View Article and Find Full Text PDFCell Prolif
December 2024
Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
The progression of periodontitis, a bacteria-driven inflammatory and bone-destructive disease, involves myriad cellular and molecular mechanisms. Protein regulation significantly influences the pathogenesis and management of periodontitis. However, research regarding its regulatory role in periodontitis remains relatively limited.
View Article and Find Full Text PDFHypertension
January 2025
Cardiovascular Center of Excellence (M.E., N.L., C.B., U.P.M., A.N., L.R., A.M., A.S., J.J.G., S.S., J.X., X.Y., C.M.F., E.L.), New Orleans, LA.
Background: Ang-II (angiotensin II) impairs the function of the antihypertensive enzyme ACE2 (angiotensin-converting enzyme 2) by promoting its internalization, ubiquitination, and degradation, thus contributing to hypertension. However, few ACE2 ubiquitination partners have been identified, and their role in hypertension remains unknown.
Methods: Proteomics and bioinformatic analyses were used to identify ACE2 ubiquitination partners in the brain, heart, and kidney of hypertensive C57BL6/J mice of both sexes.
Biochem Pharmacol
December 2024
Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian 361023, PR China. Electronic address:
This study aimed to investigate the role of ITFG2, a protein highly expressed in cardiac tissues, in myocardial ischemic injury and its potential interactions with NEDD4-2. An in vivo myocardial infarction (MI) model was induced in mice via left anterior descending artery ligation, and ITFG2 expression was modulated using adeno-associated virus AAV9 vectors. Echocardiography was used to assess cardiac function, and primary mouse cardiomyocytes were cultured and subjected to hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!