G9P[8] rotavirus A (RVA) has been identified as the predominant genotype circulating in Yunnan, China. To elucidate the molecular characteristics of its genetic composition at the whole-genome level, the genomes of 12 strains isolated from paediatric patients with diarrhoea were fully sequenced and characterized. Eleven of the 12 strains were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1, which is closely related to the Wa-like genotype 1 constellation. In contrast, one strain was genotyped as G9-P[8]-I1-R1-C1-M1-A1-N2-T1-E1-H1, with the NSP2 gene characterized as a DS-1 like genotype. Bayesian phylogenetic analysis indicated that G9 strains had emerged in 1932 with an estimated average evolutionary rate of 1.63×10-3 substitutions/site/year. Considering the high prevalence and fast evolutionary rate of G9P[8] rotaviruses, our results suggest that G9P[8] RVA should be strictly monitored in China.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jgv.0.000807DOI Listing

Publication Analysis

Top Keywords

yunnan china
8
evolutionary rate
8
completely genomic
4
genomic evolutionary
4
evolutionary characteristics
4
characteristics human-dominant
4
g9p[8]
4
human-dominant g9p[8]
4
g9p[8] group
4
group rotavirus
4

Similar Publications

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

Chromosome-level genome assembly, annotation, and population genomic resource of argali (Ovis ammon).

Sci Data

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.

Argali stands as the largest species among wild sheep in Central and East Asia, with a concerning rate of decline estimated at 30%. The intraspecific taxonomy of argali remains contentious due to limited genomic data and unclear geographic separation. In this study, we constructed a chromosome-level genome assembly and annotation for the Tibetan argali (O.

View Article and Find Full Text PDF

Tailoring pyridine bridged chalcogen-concave molecules for defects passivation enables efficient and stable perovskite solar cells.

Nat Commun

January 2025

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.

Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.

View Article and Find Full Text PDF

Cryo-EM structure of an activated GPR4-Gs signaling complex.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.

Article Synopsis
  • G protein-coupled receptor 4 (GPR4) is part of a group called proton-sensing GPCRs that respond to pH changes and regulate various physiological functions, with its overactivation noted in acidic tumor environments.
  • Researchers used cryo-electron microscopy to determine the 3D structures of zebrafish GPR4 at different pH levels, revealing important histidine and acidic residues that affect its proton-sensing ability, alongside key triad residues.
  • The study also identified a cluster of aromatic residues in GPR4's orthosteric pocket that may play a crucial role in transferring signals to the inside of the cell, laying the groundwork for further research on psGPCRs.
View Article and Find Full Text PDF

Non-conventional yeasts: promising cell factories for organic acid bioproduction.

Trends Biotechnol

January 2025

Department of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Microbial production of organic acids has been hindered by the poor acid tolerance of microorganisms and the high costs of waste salt reprocessing. The robustness of non-conventional microorganisms in an acidic environment makes it possible to produce organic acids at low pH and greatly simplifies downstream processing. In this review we discuss the environmental adaptability features of non-conventional yeasts, as well as the latest developments in genomic engineering strategies that have facilitated metabolic engineering of these strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!