Osteocyte Mechanobiology.

Curr Osteoporos Rep

Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA.

Published: August 2017

Purpose Of Review: Over the past decades, osteocytes have emerged as mechano-sensors of bone and master regulators of bone homeostasis. This article summarizes latest research and progress made in understanding osteocyte mechanobiology and critically reviews tools currently available to study these cells.

Recent Findings: Whereas increased mechanical forces promote bone formation, decrease loading is always associated with bone loss and skeletal fragility. Recent studies identified cilia, integrins, calcium channels, and G-protein coupled receptors as important sensors of mechanical forces and Ca and cAMP signaling as key effectors. Among transcripts regulated by mechanical forces, sclerostin and RANKL have emerged as potential therapeutic targets for disuse-induced bone loss. In this paper, we review the mechanisms by which osteocytes perceive and transduce mechanical cues and the models available to study mechano-transduction. Future directions of the field are also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5656287PMC
http://dx.doi.org/10.1007/s11914-017-0373-0DOI Listing

Publication Analysis

Top Keywords

mechanical forces
12
osteocyte mechanobiology
8
bone loss
8
bone
5
mechanobiology purpose
4
purpose review
4
review decades
4
decades osteocytes
4
osteocytes emerged
4
emerged mechano-sensors
4

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.

View Article and Find Full Text PDF

Background: This study assessed stress distributions in simulated mandibular molars filled with various materials after the removal of fractured instruments from the apical thirds of the root canals.

Methods: Finite element models of the mesial and distal root canals were created, where fractured instruments were assumed to be removed using a staging platform established with a modified Gates-Glidden bur (Woodpecker, Guangxi, P.R.

View Article and Find Full Text PDF

Mechanical behavior of external root resorption cavities restored with different materials: a 3D-FEA study.

BMC Oral Health

January 2025

Faculty of Dentistry, Department of Endodontics, Ondokuz Mayis University, Samsun, Kurupelit, 55139, Turkey.

Background: The aim was to evaluate the stresses in teeth, with external root resorption (ERR) restored with different materials using finite element analysis (FEA).

Methods: In this study, a Micro-CT scan was conducted on a prepared maxillary central tooth. DICOM-compatible images obtained from the sections were converted into stereolithography format using Ctan software.

View Article and Find Full Text PDF

Electrochemical approaches for CO point source, direct air, and seawater capture: identifying opportunities and synergies.

Environ Sci Pollut Res Int

January 2025

Institute for Integrated Energy Systems at University of Victoria (IESVic), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.

The world is increasingly facing the direct effects of climate change triggering warnings of a crisis for the healthy existence of humankind. The dominant driver of the climate emergency is the historical and continued accumulation of atmospheric CO altering net radiative forcing on the planet. To address this global issue, understanding the core chemistry of CO manipulation in the atmosphere and proximally in the oceans is crucial, to offer a direct partial solution for emissions handling through negative emissions technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!