Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447094 | PMC |
http://dx.doi.org/10.3389/fcimb.2017.00217 | DOI Listing |
Calcif Tissue Int
January 2025
Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.
View Article and Find Full Text PDFAging Dis
December 2024
Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China.
Vascular cognitive impairment and dementia (VCID), resulting from chronic cerebral hypoperfusion, represent the second most prevalent form of dementia globally. Aerobic exercise is widely acknowledged as an effective intervention for various cognitive disorders. This study utilized a bilateral common carotid artery stenosis (BCAS) model to investigate whether aerobic exercise promotes cognitive recovery through the Annexin-A1 (ANXA1)/mitogen-activated protein kinase (MAPK) axis in BCAS mice.
View Article and Find Full Text PDFAging Dis
December 2024
Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.
Osteoarthritis (OA) is a multifaceted degenerative joint disorder affected by various risk factors such as age, mechanical stress, inflammation, and metabolic influences. These elements contribute to its diverse phenotypes and endotypes, underscoring the disease's inherent complexity. The involvement of multiple tissues and their interplay further complicates OA's investigation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
National Tsing Hua University, Hsinchu, Taiwan.
Background: Abnormal brain inflammation is an important feature of Alzheimer's disease (AD). Central nervous system (CNS) inflammation is highly related to immune cell activation. Homeostasis of immune cell activity regulation is crucial for CNS autoimmune response.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
Background: Alzheimer's disease (AD) is associated with synaptic and memory dysfunction. A pathological hallmark of the disease is reactive astrogliosis, with reactive astrocytes surrounding amyloid plaques in the brain. Astrocytes have also been shown to be actively involved in disease progression, nevertheless, mechanistic information about their role in synaptic transmission during AD pathology is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!