Improving the performance of resistive switching memories, while providing high transparency and excellent mechanical stability, has been of great interest because of the emerging need for electronic wearable devices. However, it remains a great challenge to fabricate fully flexible and transparent resistive switching memories because not enough research on flexible and transparent electrodes, for their application in resistive switching memories, has been conducted. Therefore, it has not been possible to obtain a nonvolatile memory with commercial applications. Recently, an electrode composed of a networked structure of Ag nanowires (AgNWs) embedded in a polymer, such as colorless polyimide (cPI), has been attracting increasing attention because of its high electrical, optical, and mechanical stability. However, for an intended use as a transparent electrode and substrate for resistive switching memories, it still has the crucial disadvantage of having a limited surface coverage of conductive pathways. Here, we introduce a novel approach to obtain a AgNWs/cPI composite electrode with a high figure-of-merit, mechanical stability, surface smoothness, and abundant surface coverage of conductive networks. By employing the fabricated electrodes, a flexible and transparent resistive memory could be successfully fabricated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469806PMC
http://dx.doi.org/10.1038/s41598-017-03746-1DOI Listing

Publication Analysis

Top Keywords

resistive switching
20
flexible transparent
16
switching memories
16
transparent resistive
12
mechanical stability
12
composite electrode
8
surface coverage
8
coverage conductive
8
resistive
6
transparent
5

Similar Publications

Pulmonary arterial hypertension (PAH) is a rare and potentially fatal condition characterized by progressive increases in blood pressure in the arteries of the lungs. Oral selexipag, approved by the Food and Drug Administration (FDA) in 2015 for the treatment of PAH, targets prostacyclin receptors on pulmonary arterial vascular smooth muscle and endothelial cells to improve blood flow through the lungs and reduce pulmonary vascular resistance. Oral selexipag is effective, but may be discontinued due to factors like side effects, emergency conditions, or inability to take oral medication, potentially leading to severe adverse events, such as rebound pulmonary hypertension and right heart failure.

View Article and Find Full Text PDF

Background: Nontuberculous mycobacteria (NTM) are emerging pathogens responsible for increasing skin and soft tissue infections (SSTIs) globally. However, the diagnosis and treatment of NTM SSTIs face significant challenges due to the lack of standardized guidelines. This study reviewed the clinical characteristics, diagnostic challenges, and treatment outcomes of NTM SSTIs in a large cohort from a tertiary referral center in Beijing, China.

View Article and Find Full Text PDF

Background: Doravirine is licensed in patients living with HIV (PWH) harbouring no prior resistance to any NNRTIs. We aimed to evaluate in real life the efficacy of doravirine with prior NNRTI virological failure and NNRTI resistance-associated mutations (RAMs).

Methods: This observational study included PWH switched to a doravirine-containing regimen between 30 September 2019 and 1 May 2022, with an HIV-1 RNA of ≤50 copies/mL and past NNRTI-RAMs.

View Article and Find Full Text PDF

Nonlocalized Conductive Paths Construction and In-depth Mechanism Analysis for the Robust Resistive Switching in Halide Perovskites.

Nano Lett

January 2025

School of Materials Science and Engineering, State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450001, China.

The conductive paths (CPs) established by defects in halide perovskites (HPs) tend to be disrupted under external influences, leading to deterioration of their RRAM performances. Here we propose an effective strategy to enhance the CPs in HP RRAMs by doping Ag to partially substitute Pb in MAPbI, which facilitates the nonlocalized growth of Ag CPs and thereby improves the stability of CPs. The optimal doped device demonstrates excellent RRAM performances including high ON/OFF ratios (>10), long retention (>10 s), large endurance (>10 cycles), uniform parameters, and excellent yield.

View Article and Find Full Text PDF

In-Plane Polarization-Triggered WS-Ferroelectric Heterostructured Synaptic Devices.

ACS Appl Mater Interfaces

January 2025

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

To date, various kinds of memristors have been proposed as artificial neurons and synapses for neuromorphic computing to overcome the so-called von Neumann bottleneck in conventional computing architectures. However, related working principles are mostly ascribed to randomly distributed conductive filaments or traps, which usually lead to high stochasticity and poor uniformity. In this work, a heterostructure with a two-dimensional WS monolayer and a ferroelectric PZT film were demonstrated for memristors and artificial synapses, triggered by in-plane ferroelectric polarization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!