AI Article Synopsis

  • We studied how different types of geometric quantum discords (GQDs) decay in two interacting qubits using the Heisenberg XY model, which are also connected to thermal environments.
  • By adjusting the parameters of the qubit interactions, we found that the decay rates of the GQDs could be slowed down compared to noninteracting qubits.
  • In the long run, modifying the anisotropy of the model and the strength of the transverse magnetic field significantly improved the GQDs, and we identified interesting relationships between various GQDs that affect quantum correlations, including sudden changes in their dynamics.

Article Abstract

We examined decay dynamics of various geometric quantum discords (GQDs) for two interacting qubits described by the Heisenberg XY model and further coupled independently to their respective thermal reservoirs. Compared to the case of noninteracting qubits, our results showed that decay rates of the GQDs can be retarded apparently by properly choosing system parameters of the interaction term. In the long-time limit, the asymptotic values of the GQDs are enhanced evidently by tuning anisotropy of the model and strength of the transverse magnetic field. We further illuminated the relations between different GQDs on characterizing quantum correlations, and observed multiple sudden change behaviors of their dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5469867PMC
http://dx.doi.org/10.1038/s41598-017-03535-wDOI Listing

Publication Analysis

Top Keywords

geometric quantum
8
quantum discords
8
interacting qubits
8
discords interacting
4
qubits thermal
4
thermal reservoir
4
reservoir examined
4
examined decay
4
decay dynamics
4
dynamics geometric
4

Similar Publications

The magnetic behavior of endohedrally transition-metal-doped tetrel clusters SnTM (TM = Cr, Mn, Fe) was investigated using a combined experimental and theoretical approach. Based on an improved experimental setup, the magnetic deflection was measured over a wide temperature range of = 16-240 K. From a Curie analysis of the experimentally observed single-sided shift at high nozzle temperatures, the spin multiplicities and -factors were determined.

View Article and Find Full Text PDF

How Structure and Hydrostatic Pressure Impact Excited-State Properties of Organic Room-Temperature Phosphorescence Molecules: A Theoretical Perspective.

J Phys Chem A

January 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.

Organic room-temperature phosphorescence (RTP) emitters with long lifetimes, high exciton utilizations, and tunable emission properties show promising applications in organic light-emitting diodes (OLEDs) and biomedical fields. Their excited-state properties are highly related to single molecular structure, aggregation morphology, and external stimulus (such as hydrostatic pressure effect). To gain a deeper understanding and effectively regulate the key factors of luminescent efficiency and lifetime for RTP emitters, we employ the thermal vibration correlation function (TVCF) theory coupled with quantum mechanics/molecular mechanics (QM/MM) calculations to investigate the photophysical properties of three reported RTP crystals (Bp-OEt, Xan-OEt, and Xan-OMe) with elastic/plastic deformation.

View Article and Find Full Text PDF

The storage and release of energy is an economic cornerstone. In quantum dots (QDs), energy storage is mostly governed by their surfaces, in particular by surface chemistry and faceting. The impact of surface free energy (SFE) through surface faceting has already been studied in QDs.

View Article and Find Full Text PDF

Probing Berry Phase Effect in Topological Surface States.

Phys Rev Lett

December 2024

State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.

We have observed the Berry phase effect associated with interband coherence in topological surface states (TSSs) using two-color high-harmonic spectroscopy. This Berry phase accumulates along the evolution path of strong field-driven electron-hole quasiparticles in electronic bands with strong spin-orbit coupling. By introducing a secondary weak field, we perturb the evolution of Dirac fermions in TSSs and thus provide access to the Berry phase.

View Article and Find Full Text PDF

We report on a class of gapped projected entangled pair states (PEPS) with non-trivial Euler topology motivated by recent progress in band geometry. In the non-interacting limit, these systems have optimal conditions relating to saturation of quantum geometrical bounds, allowing for parent Hamiltonians whose lowest bands are completely flat and which have the PEPS as unique ground states. Protected by crystalline symmetries, these states evade restrictions on capturing tenfold-way topological features with gapped PEPS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!