The present work was aimed at the development and validation of a new, efficient and reliable technique for the analysis of the main non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp) inflorescences belonging to different varieties. This study was designed to identify samples with a high content of bioactive compounds, with a view to underscoring the importance of quality control in derived products as well. Different extraction methods, including dynamic maceration (DM), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) and supercritical-fluid extraction (SFE) were applied and compared in order to obtain a high yield of the target analytes from hemp. Dynamic maceration for 45min with ethanol (EtOH) at room temperature proved to be the most suitable technique for the extraction of cannabinoids in hemp samples. The analysis of the target analytes in hemp extracts was carried out by developing a new reversed-phase high-performance liquid chromatography (HPLC) method coupled with diode array (UV/DAD) and electrospray ionization-mass spectrometry (ESI-MS) detection, by using an ion trap mass analyser. An Ascentis Express C column (150mm×3.0mm I.D., 2.7μm) was selected for the HPLC analysis, with a mobile phase composed of 0.1% formic acid in both water and acetonitrile, under gradient elution. The application of the fused-core technology allowed us to obtain a significant improvement of the HPLC performance compared with that of conventional particulate stationary phases, with a shorter analysis time and a remarkable reduction of solvent usage. The analytical method optimized in this study was fully validated to show compliance with international requirements. Furthermore, it was applied to the characterization of nine hemp samples and six hemp-based pharmaceutical products. As such, it was demonstrated to be a very useful tool for the analysis of cannabinoids in both the plant material and its derivatives for pharmaceutical and nutraceutical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2017.05.049 | DOI Listing |
J Chromatogr A
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, and Medical Science and Technology Innovation Center, School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:
Considering the widespreadly use, large consumption, and serious environmental and health threats of phenylpyrazole insecticides (PPIs), development of a selective and sensitive method for accurate detection of their residuals in food samples is of great significance and challenging. Herein, depending on the hydrophobic and F-containing characteristics of PPIs, a novel fluorinated magnetic microporous organic network (FMMON) was designed and prepared for efficient and selective magnetic solid-phase extraction (MSPE) of two typical PPIs (fipronil and ethiprole) from milk and egg samples before the HPLC-UV determination. FMMON owned large specific surface area, multiple interaction sites, excellent magnetic separation performance and stability and exhibited good extraction and selectivity for fipronil and ethiprole through the specific F-F, hydrogen bonding, hydrophobic, and π-π interactions.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Resorcinol is a widespread substance used in a large variety of manufacturing industries, including cosmetics, with endocrine-disrupting activity on the thyroid function. The aim of the present study was to develop and validate a sensitive, selective and robust method to quantify resorcinol in urine and thereby assess hairdressers' occupational exposure. As resorcinol is mainly excreted in urine as glucuronide or sulfate forms, the first step consisted in hydrolyzing urine samples with a β-glucuronidase-arylsulfatase enzyme for 16 h.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
Université Clermont Auvergne, Institut Universitaire de Technologie, UMR INSERM-UCA, U1240, Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 5 Avenue Blaise Pascal, 63000 Clermont-Ferrand, France.
A method using high-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) was developed and validated to quantify the innovative tool LightSpot®-FL-1, a selective permeability-glycoprotein (P-gp)-targeted fluorescent conjugate used to measure P-gp expression in cell samples. Quantifying P-gp is a major challenge in oncology as its overexpression in many cancer cells results in Multidrug Resistance (MDR) associated with chemotherapy failure. To develop the method reported herein, both sample preparation and analysis parameters were investigated.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Organic Chemistry LR17-ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
The phytochemical profile of various plant species reveals that some compounds possess notable antioxidant and antimicrobial properties. In this study we investigated for the first time, the antioxidant activity (FRAP, DPPH and TAC), total phenolic contents and total flavonoid contents of Delile ex Godr flowers extracts (-hexane, ethyl acetate and methanol) as well as their antimicrobial activity. The results obtained showed that the methanol extract contained the highest content of total phenolics (346.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!