Transcriptional response of a novel HpCDPK1 kinase gene from Hippeastrum x hybr. to wounding and fungal infection.

J Plant Physiol

Nicolas Copernicus University, Chair of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100 Torun, Poland. Electronic address:

Published: September 2017

Calcium dependent protein kinases (CDPK) are well established plant sensor and effectors for calcium ions and participate in regulation of multiple abiotic and biotic stress responses in plant cells. Here we present the identification and characterization of a new CDPK kinase gene from bulbous plant Hippeastrum x hybr. and examine the role of this kinase in stress responses leading to phytoalexin (PA) production in plant tissues. In the previous research, it was shown that Hippeastrum bulbs mechanically wounded or infected with Peyronellaea curtisii (=Phoma narcissi) are inducted to an antifungal red substance synthesis. In this research, we demonstrated Ca dependence of the phytoalexin production by wounded bulbs. Furthermore, the isolated HpCDPK1 cDNA for ORF was found to be 1596bp long and encoded 531 amino acid protein with CDPK kinase activity, as was shown by recombinant GST-HpCDPK1 enzyme production and analysis. HpCDPK1 transcript was present in all vegetative and chosen generative organs of Hippeastrum plant. The dynamics of the observed HpCDPK1 mRNA changes in bulbs depended on stressor type. The mechanical injury caused one wave of transcript increase while more complex transcript changes were observed within 48h after Peyronellaea inoculation. In plant bulbs already accumulating red phytoalexin, increases in HpCDPK1 mRNA level were observed at certain intervals within 48h whereas, in the case of fungal infection, only one big increment in the transcript amount at the 10th minute after inoculation was detected. The observed transcriptional response of HpCDPK1 gene to wounding and pathogen infection stress suggests a positive correlation with phytoalexin synthesis and maintenance in bulb tissues and puts more light on CDPK kinase role in the plant stress response regulation. This also bears some potential for understanding the mechanism of a phytoalexin formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2017.05.025DOI Listing

Publication Analysis

Top Keywords

cdpk kinase
12
transcriptional response
8
kinase gene
8
hippeastrum hybr
8
fungal infection
8
stress responses
8
phytoalexin production
8
hpcdpk1 mrna
8
plant
7
hpcdpk1
6

Similar Publications

Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca] signalling through phosphorylation. However, Ca-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold.

View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Understanding the Development of Compensatory Pathways in a Mutant Malaria Parasite Harbouring Hypomorphic Allele of Plant-Like Kinases.

J Vis Exp

November 2024

Cellular and Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University; Laboratory of Malaria and Vector Research and National Institutes of Allergy and Infectious Diseases, National Institutes of Health;

Article Synopsis
  • The malaria parasite can alter its transcriptome to resist the effects of drugs, particularly affecting multigene families.
  • CDPK family protein kinases in Plasmodium falciparum are crucial for its development and are potential targets for anti-malarial drugs.
  • By using a chemical genetics approach to study a mutant parasite with a modified cdpk1 gene, researchers aim to discover compensatory mechanisms that could be targeted to combat drug resistance.
View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs) phosphorylate downstream target proteins in response to signals transmitted by free calcium ions (Ca, one of the second messengers) and thus play important regulatory roles in many biological processes, such as plant growth, development, and stress response.

Results: A bioinformatic analysis, as well as thorough evolutionary and expression investigations, were conducted to confirm previous reports of functional evidence for plant CDPKs. Using the Phytozome database's BLAST search engine and the HMM search tool in TBtools software, we discovered that CDPKs are well conserved from green algae to flowering angiosperms in various gene family sizes.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CDPKs) serve as calcium ion sensors and play crucial roles in all aspects of plant life cycle. While gene family has been extensively studied in various plants, there is limited information available for members in oat, an important cereal crop worldwide. Totally, 60 genes were identified in oat genome and were classified into four subfamilies based on their phylogenetic relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!