A partial pancreaticogastrodudenectomy was performed on a 66-year old man with type 2 diabetes mellitus because of an invasive, moderately differentiated adenocarcinoma in the head of the pancreas. In the adjacent grossly normal tissue of the uncinate process, there was a massive proliferation of pancreatic polypeptide (PP) cells confined to this region and showed invasive pattern. Strikingly, in the heaped area of his duodenum, there was a strikingly large number of PP, glucagon, a few insulin cells in a mini-islet-like patterns composed of glucagon and insulin cells. Among the etiological factors, the possible long-lasting effects of the GLP-1 analog, with which the patient was treated, are discussed. This is the first report in the literature of both the coexistence of a pancreatic adenocarcinoma and invasive PPoma and the occurrence of PP and insulin cells in human duodenal mucosa.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MPA.0000000000000844 | DOI Listing |
Diabetes Obes Metab
January 2025
Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China.
Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450052, China.
Reductive stress, characterized by rising level of NADH (nicotinamide adenine dinucleotide) for a status of NADH/NAD ratio elevation, has been reported in obesity and cancer. However, the mechanism and significance of reductive stress remain to be established in obesity. This perspective is prepared to address the issue with new insights published recently.
View Article and Find Full Text PDFRen Fail
December 2025
Guangdong Medical University, Dongguan, China.
Background: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease globally. Recent research has identified insulin-like growth factor-binding proteins 2 (IGFBP2) and 4 (IGFBP4) as potential biomarkers for DKD. Overactivation of the complement pathway in DKD remains poorly understood.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.
Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).
J Ovarian Res
January 2025
Department of Urology, Zigong Fourth People's Hospital, Zigong, Sichuan, China.
Background: Granulosa cell proliferation and survival are essential for normal ovarian function and follicular development. Long non-coding RNAs (lncRNAs) have emerged as important regulators of cell proliferation and differentiation. Nuclear paraspeckle assembly transcript 1 (NEAT1) has been implicated in various cellular processes, but its role in granulosa cell function remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!