Neuroimaging studies described brain structural changes that comprise the mechanisms underlying individual differences in migraine development and maintenance. However, whether such interindividual variability in migraine was observed in a pretreatment scan is a predisposition for subsequent hypoalgesia to placebo treatment that remains largely unclear. Using T1-weighted imaging, we investigated this issue in 50 healthy controls (HC) and 196 patients with migraine without aura (MO). An 8-week double-blinded, randomized, placebo-controlled acupuncture was used, and we only focused on the data from the sham acupuncture group. Eighty patients participated in an 8-weeks sham acupuncture treatment, and were subdivided (50% change in migraine days from baseline) into recovering (MOr) and persisting (MOp) patients. Optimized voxel-based morphometry (VBM) and functional connectivity analysis were performed to evaluate brain structural and functional changes. At baseline, MOp and MOr had similar migraine activity, anxiety and depression; reduced migraine days were accompanied by decreased anxiety in MOr. In our findings, the MOr group showed a smaller volume in the left medial prefrontal cortex (mPFC), and decreased mPFC-related functional connectivity was found in the default mode network. Additionally, the reduction in migraine days after placebo treatment was significantly associated with the baseline gray matter volume of the mPFC which could also predict post-treatment groups with high accuracy. It indicated that individual differences for the brain structure in the pain modulatory system at baseline served as a substrate on how an individual facilitated or diminished hypoalgesia responses to placebo treatment in migraineurs. Hum Brain Mapp 38:4386-4397, 2017. © 2017 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866832 | PMC |
http://dx.doi.org/10.1002/hbm.23667 | DOI Listing |
Viruses
November 2024
Department of Biochemistry and Molecular Biology, College of Medicine Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA.
are ssDNA plant viruses whose control has both economical and agricultural importance. Their capsids assemble into two distinct architectural forms: (i) a T = 1 icosahedral and (ii) a unique twinned quasi-isometric capsid. Described here are the high-resolution structures of both forms of the maize streak virus using cryo-EM.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
This systematic review examines EEG-based imagined speech classification, emphasizing directional words essential for development in the brain-computer interface (BCI). This study employed a structured methodology to analyze approaches using public datasets, ensuring systematic evaluation and validation of results. This review highlights the feature extraction techniques that are pivotal to classification performance.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Computer Science, Polish-Japanese Academy of Information Technology, 86 Koszykowa Street, 02-008 Warsaw, Poland.
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early detection is crucial for effective intervention strategies, this study investigates whether the structural analysis of selected brain regions, including volumes and their spatial relationships obtained from regular T1-weighted MRI scans ( = 168, PPMI database), can model stages of PD using standard machine learning (ML) techniques. Thus, diverse ML models, including Logistic Regression, Random Forest, Support Vector Classifier, and Rough Sets, were trained and evaluated.
View Article and Find Full Text PDFPharmaceutics
December 2024
Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
The blood-brain barrier (BBB) serves as a highly selective barrier between the blood and the central nervous system (CNS), and its main function is to protect the brain from foreign substances. This physiological property plays a crucial role in maintaining CNS homeostasis, but at the same time greatly limits the delivery of drug molecules to the CNS, thus posing a major challenge for the treatment of neurological diseases. Given that the high incidence and low cure rate of neurological diseases have become a global public health problem, the development of effective BBB penetration technologies is important for enhancing the efficiency of CNS drug delivery, reducing systemic toxicity, and improving the therapeutic outcomes of neurological diseases.
View Article and Find Full Text PDFToxics
November 2024
National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27709, USA.
Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!