In recent years, construction and characterization of core-shell structures have attracted great attention because of their unique functional properties and their integration into technological devices. However, some aspects of their basic physics still remain to be explored. In this study, we report on an extensive hierarchical multiscale modeling methodology applied to Fe-Ni core/shell nanostructures of technological interest. As a first step, supported on a first-principles study, we develop a methodology to compute primordial but unprecedented parameters such as the exchange coupling and the equilibrium bond distances at the interface, namely J = 35.48 meV and d = 2.5 Å. This methodology can be used for computing fundamental parameters in mixed systems by knowing the parameters in the bulk samples, and the so-obtained results can be used in higher size scale simulations. As a proof, the results obtained are used as input parameters for atomistic simulations on Fe-Ni samples made out of a Fe core surrounded by a Ni shell whose external diameter varies finely in the range 60-110 nm. The inner diameter and height are fixed to be 40 and 50 nm, respectively. We address the structural, electronic, static magnetic and hysteresis properties of the Fe-Ni core/shell cylindrical nanostructures in different size ranges. These nanostructures reveal different magnetic properties with novel complex states, which are studied in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp01825h | DOI Listing |
Talanta
May 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China. Electronic address:
Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell.
View Article and Find Full Text PDFSmall
December 2024
Department of Chemistry and Biology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
Materials (Basel)
August 2024
Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400641 Cluj-Napoca, Romania.
Soft magnetic composite cores were produced by spark plasma sintering (SPS) from NiFe@ZnFeO and NiFeMo@ZnFeO pseudo-core-shell powders. In the Fe-Ni alloys@ZnFeO pseudo-core-shell composite powders, the core is a large nanocrystalline Permalloy or Supermalloy particle obtained by mechanical alloying, and the shell is a pseudo continuous layer of Zn ferrite particles. The pseudo-core-shell powders have been compacted by SPS at temperatures between 500-700 °C, with a holding time of 0 min.
View Article and Find Full Text PDFChemosphere
November 2023
Energy and Environmental Materials Research Centre (E(2)MC), School of Metallurgy, Northeastern University, Shenyang, 110819, China. Electronic address:
A nanostructured core-shell composite (NiFeO/(Fe,Ni)@carbon, NFC) comprising magnetic nano-cores encapsulated with graphitic shells (≈80 wt%) is prepared by facile and clean mechanochemical-molten salt processing approach using waste PET; providing a specific surface area of 201.9 m g, well-developed mesopores, and ferromagnetic behavior characterized by the coercivity value of 149 Oe. NFC is utilized as a high-performance adsorbent for the removal of organic dyes from their aqueous solutions.
View Article and Find Full Text PDFSmall
April 2023
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China.
Unlike single-step reactions, multi-step reactions can be greatly facilitated only if all the intermediate reactions can be catalyzed simultaneously and progressively. Herein, the theoretical analysis and experiments to illustrate the superiority of the cascade oxygen evolution reaction (OER) are conducted. As different OER intermediate reactions demand Fe Ni OOH with altered Fe/Ni ratios, gradient Fe-doped NiOOH can be an ideal electrocatalyst for the efficient cascade OER in line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!