Role of electrochemically in-house synthesized and functionalized graphene nanofillers in the structural performance of epoxy matrix composites.

Phys Chem Chem Phys

Electrometallurgy and Corrosion Laboratory, Metallurgical and Materials Engineering Department, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.

Published: June 2017

The present study focuses on the intriguing enhancement in the mechanical properties of an epoxy-based composite structure resulting from the incorporation of in-house synthesized functionalized graphene nanosheets (f-GNSs) as nanofillers. The f-GNSs were obtained by anionic electrochemical intercalation and exfoliation with 2 M HSO, HClO, and HNO protic electrolytes. The structural properties of the as-synthesized GNSs were analyzed by XRD and Raman spectroscopy. The (002) and (001) lattice planes of graphene and graphene oxide are observed at around 24.5° and 11° (2θ), respectively, in the XRD spectra. The characteristic peaks at around 1345, 1590, and 2700 cm correspond to the D, G, and 2D bands of the GNSs in the Raman spectra. Quantification of the functional groups and sp contents in the GNSs were further analyzed by XPS. Morphological characterization of the f-GNSs reveals that the exfoliated carbon sheets consist of 2-8 layers. The composites are then fabricated by addition of these f-GNSs nanofillers, and the effect of the wt% of the nanofillers on the mechanical properties of the composites is analyzed with the three-point bend test and fractography analysis through interfacial morphological analysis. The addition of 0.1 wt% of nitric-acid-exfoliated f-GNSs nanofiller results in maximum increases of 42.6% and 28.2% in the flexural strengths of neat epoxy resin and glass fiber/epoxy polymer composite structures, respectively. Similarly, the moduli increase by 33.5% and 57.7% in the neat epoxy resin and glass fiber/epoxy polymer composite structures, respectively. The effect of epoxy/f-GNSs interfacial bonding in the composite structure was studied by DSC analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp01615hDOI Listing

Publication Analysis

Top Keywords

in-house synthesized
8
synthesized functionalized
8
functionalized graphene
8
mechanical properties
8
composite structure
8
f-gnss nanofillers
8
gnss analyzed
8
neat epoxy
8
epoxy resin
8
resin glass
8

Similar Publications

Leishmaniasis is a neglected disease caused by parasites of the genus Leishmania sp. that causes approximately 1 million cases and 650,000 deaths annually worldwide. Its treatment has several limitations mainly due to high toxicity and clinical resistance, and the search for alternatives is highly desirable.

View Article and Find Full Text PDF

Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

View Article and Find Full Text PDF

Management of mass casualty incidents: a systematic review and clinical practice guideline update.

Eur J Trauma Emerg Surg

January 2025

Institute for Research in Operative Medicine (IFOM), Faculty of Health, School of Medicine, Witten/Herdecke University, Ostmerheimer Str. 200, 51109, Cologne, Germany.

Purpose: Our aim was to generate evidence- and consensus-based recommendations for the management of mass casualty incidents (MCIs) based on current evidence. This guideline topic is part of the 2022 update of the German guideline on the treatment of patients with severe/multiple injuries.

Methods: MEDLINE and Embase were systematically searched to August 2021.

View Article and Find Full Text PDF

Discovery of 4,5-dihydro-benzo[g]indazole-based hydroxamic acids as HDAC3/BRD4 dual inhibitors and anti-tumor agents.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:

Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.

View Article and Find Full Text PDF

Objective: The study aimed to conduct a comparative analysis of the effects of incorporating hydrazinyl coumarin derivative (HCD) in resin-modified (RMGIC) and conventional glass ionomer cement (cGIC) on their release profiles and antibacterial properties.

Method: Resin-modified GIC, Fuji II LC (F2) and high-fluoride cGIC, Fuji VII (F7) were used as controls. HCD was synthesized in-house, incorporated into both RMGIC and cGICs at 1 % and 2 % weight percentages (w/w), and chemically analyzed using Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!