Ionizing radiation may cause irreversible ovarian failure, which, therefore, calls for an effective radioprotective reagent. The aim of the present study was to evaluate the potential radioprotective effect of N-acetylcysteine (NAC) on ionizing radiation induced ovarian failure and loss of ovarian reserve in mice. Kun-Ming mice were either exposed to X-irradiation (4 Gy), once, and/or treated with NAC (300 mg/kg), once daily for 7 days before X-irradiation. We examined the serum circulating hormone levels and the development of ovarian follicles as well as apoptosis, cell proliferation, and oxidative stress 24 hours after X-irradiation. In addition, morphological observations on the endometrial luminal epithelium and the fertility assessment were performed. We found that NAC successfully restored the ovarian and uterine function, enhanced the embryo implantation, improved the follicle development, and altered the abnormal hormone levels through reducing the oxidative stress and apoptosis level in granulosa cells while promoting the proliferation of granulosa cells. In conclusion, the radioprotective effect of NAC on mice ovary from X-irradiation was assessed, and our results suggested that NAC can be a potential radioprotector which is capable of preventing the ovarian failure occurrence and restoring the ovarian reserve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457747 | PMC |
http://dx.doi.org/10.1155/2017/4176170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!