Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the combustion behavior of gel fuel droplets is pivotal for enhancing burn rates, lowering ignition delay and improving the operational performance of next-generation propulsion systems. Vapor jetting in burning gel fuel droplets is a crucial process that enables an effective transport (convectively) of unreacted fuel from the droplet domain to the flame zone and accelerates the gas-phase mixing process. Here, first we show that the combusting ethanol gel droplets (organic gellant laden) exhibit a new oscillatory jetting mode due to aperiodic bursting of the droplet shell. Second, we show how the initial gellant loading rate (GLR) leads to a distinct shell formation which self-tunes temporally to burst the droplet at different frequencies. Particularly, a weak-flexible shell is formed at low GLR that undergoes successive rupture cascades occurring in same region of the droplet. This region weakens due to repeated ruptures and causes droplet bursting at progressively higher frequencies. Contrarily, high GLRs facilitate a strong-rigid shell formation where consecutive cascades occur at scattered locations across the droplet surface. This leads to droplet bursting at random frequencies. This method of modulating jetting frequency would enable an effective control of droplet trajectory and local fuel-oxidizer ratio in any gel-spray based energy formulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468320 | PMC |
http://dx.doi.org/10.1038/s41598-017-03221-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!