Genetic improvement of the plant cell wall has enormous potential to increase the quality of food, fibers, and fuels. However, the identification and characterization of genes involved in plant cell wall synthesis is far from complete. Association mapping is one of the few techniques that can help identify candidate genes without relying on our currently incomplete knowledge of cell wall synthesis. However, few cell wall phenotyping methodologies have proven sufficiently precise, robust, or scalable for association mapping to be conducted for specific cell wall polymers. Here, we created high-density carbohydrate microarrays containing chemically extracted cell wall polysaccharides collected from 331 genetically diverse cultivars and used them to obtain detailed, quantitative information describing the relative abundance of selected noncellulosic polysaccharide linkages and primary structures. We undertook genome-wide association analysis of data collected from 57 carbohydrate microarrays and identified molecular markers reflecting a diversity of specific xylan, xyloglucan, pectin, and arabinogalactan moieties. These datasets provide a detailed insight into the natural variations in cell wall carbohydrate moieties between genotypes and identify associated markers that could be exploited by marker-assisted breeding. The identified markers also have value beyond for functional genomics, facilitated by the close genetic relatedness to the model plant Together, our findings provide a unique dissection of the genetic architecture that underpins plant cell wall biosynthesis and restructuring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5495229 | PMC |
http://dx.doi.org/10.1073/pnas.1619033114 | DOI Listing |
Curr Microbiol
January 2025
Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt.
Sheath blight, caused by AG1 IA, is a challenging disease of rice worldwide. In the current study, nine isolates, within the anastomosis group AG-1 IA, were isolated, characterized based on their macroscopic and microscopic features, as well as their ability to produce cell wall degrading enzymes (CWDEs), and further molecularly identified via ITS sequencing. Although all isolates were pathogenic and produced typical sheath blight symptoms the susceptible rice cultivar, Sakha 101, AG1 IA -isolate SHBP9 was the most aggressive isolate.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
Peptidoglycan (PGN) is the primary component of bacterial cell walls, consisting of linear glycan chains formed by alternating linkages of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) through glycosidic bonds. It exhibits biological activity in various aspects, making it a biologically significant macromolecule with extensive industrial application. This review aims to explore the latest research advancements in the extraction techniques, structural characterization, functions, and applications of PGN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!