Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast and pectoral muscle segmentation is an essential pre-processing step for the subsequent processes in computer aided diagnosis (CAD) systems. Estimating the breast and pectoral boundaries is a difficult task especially in mammograms due to artifacts, homogeneity between the pectoral and breast regions, and low contrast along the skin-air boundary. In this paper, a breast boundary and pectoral muscle segmentation method in mammograms is proposed. For breast boundary estimation, we determine the initial breast boundary via thresholding and employ Active Contour Models without edges to search for the actual boundary. A post-processing technique is proposed to correct the overestimated boundary caused by artifacts. The pectoral muscle boundary is estimated using Canny edge detection and a pre-processing technique is proposed to remove noisy edges. Subsequently, we identify five edge features to find the edge that has the highest probability of being the initial pectoral contour and search for the actual boundary via contour growing. The segmentation results for the proposed method are compared with manual segmentations using 322, 208 and 100mammograms from the Mammographic Image Analysis Society (MIAS), INBreast and Breast Cancer Digital Repository (BCDR) databases, respectively. Experimental results show that the breast boundary and pectoral muscle estimation methods achieved dice similarity coefficients of 98.8% and 97.8% (MIAS), 98.9% and 89.6% (INBreast) and 99.2% and 91.9% (BCDR), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2017.06.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!