In order to investigate the possible role of dogs and cats in the carriage and potential dissemination of resistant enterococci, seventy faecal samples from dogs and cats were tested for enterococci. Fifty-eight enterococci were recovered. Isolates were identified as Enterococcus faecium (n = 31) and E. faecalis (n = 14) E. durans (n = 6), E. casseliflavus (n = 2), E. hirae and E. gallinarum (2 isolates each). Enterococcal isolates showed resistance to ciprofloxacin (n = 35), erythromycin (n = 31), tetracycline (n = 25), kanamycin (n = 15), streptomycin (n = 13), pristinamycin (n = 11), gentamicin (n = 10), chloramphenicol (n = 8), and linezolid (n = 6). The gene erm(B) was detected in 22 out of 31 erythromycin-resistant enterococci. All tetracycline-resistant enterococci carried tet(M) and/or tet(L) genes. The gene aac(6')-Ie-aph(2″)-Ia was identified in five of high-level gentamicin-resistant isolates, the genes aph(3')-IIIa and/or aac(6')-Ie-aph(2″)-Ia in eleven high-level kanamycin-resistant isolates and the gene ant(6)-Ia in eleven high-level streptomycin-resistant isolates. Only one strain harboured cat(A) gene, and five strains contained vat(E) or vat(D) genes. Virulence genes gel(E) (21 strains), esp (11 strains) and cylA/cylB (5 strains) were detected. High genetic diversity was demonstrated among E. faecium isolates by pulsed-field gel electrophoresis (PFGE). Dogs and cats can be carriers of antibiotic-resistant enterococci in their faeces that could shed into the household environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1556/004.2017.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!