Background: Tularaemia is a zoonotic disease caused by the bacterium Francisella tularensis. In Germany, the disease is still rare (e.g. 34 human cases reported in 2015). There is a lack of data about the susceptibility of F. tularensis strains to antibiotics, because many cases are diagnosed using serological assays only.
Objectives: The antibiotic susceptibility in vitro of F. tularensis subsp. holarctica strains isolated in Germany was assessed to determine whether the currently recommended empirical therapy is still adequate.
Methods: A total of 128 F. tularensis strains were investigated that were collected between 2005 and 2014 in Germany from wild animals, ticks and humans. All isolates were genotyped using real-time PCR assays targeting canonical SNPs, and antibiotic susceptibility was tested using MIC test strips on agar plates. MIC values were interpreted using CLSI breakpoints.
Results: The strains were susceptible to antibiotics commonly recommended for tularaemia therapy, i.e. aminoglycosides (MIC90 values: gentamicin 1 mg/L; streptomycin 4.0 mg/L), tetracyclines (MIC90 values: tetracycline 0.5 mg/L; doxycycline 1.5 mg/L) and quinolones (MIC90 value: ciprofloxacin 0.064 mg/L). Chloramphenicol (MIC90 value: 3.0 mg/L) may be of value in treatment of tularaemia meningitis. Ninety-four isolates were susceptible to erythromycin, which defines biovar I (genotypes B.4 and B.6); 34 were resistant (biovar II; genotype B.12).
Conclusions: The F. tularensis isolates investigated in this study showed the typical antibiotic susceptibility pattern that was previously observed in other countries. Therefore, recommendations for empirical antibiotic therapy of tularaemia can remain unchanged. However, antibiotic susceptibility testing of clinical isolates should be performed whenever possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkx182 | DOI Listing |
Microbiol Spectr
January 2025
Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.
Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .
View Article and Find Full Text PDFmSphere
January 2025
Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Treatment with antibiotics is a major risk factor for infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to growth and competition between the microbiota and for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to infection in 12 different microbial communities cultivated from healthy individuals.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Quantitative Biology Group, University of Belgrade - Faculty of Biology, Studentski trg 16, Belgrade11000, Serbia.
Type II restriction-modification (R-M) systems play a pivotal role in bacterial defense against invading DNA, influencing the spread of pathogenic traits. These systems often involve coordinated expression of a regulatory protein (C) with restriction (R) enzymes, employing complex feedback loops for regulation. Recent studies highlight the crucial balance between R and M enzymes in controlling horizontal gene transfer (HGT).
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences Sylhet Agricultural University Sylhet Bangladesh.
The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.
View Article and Find Full Text PDFHeliyon
July 2024
Department of Medicine, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
Subclinical mastitis (SCM), a silent threat in the dairy sector of Bangladesh poses a significant economic impact and serves as a potential source of infection for healthy cows, hindering efforts to achieve milk self-sufficiency. Despite the importance of this issue, limited research has been conducted on mastitis in Sylhet region of Bangladesh. This study aimed to investigate the molecular prevalence, antimicrobial susceptibility profile and resistant genes detection on pathogens ( and causing SCM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!