Targeting the gram-negative bacteria peptidoglycan synthase MraY as a new approach for monoclonal antibody anti-bacterial activity.

Hum Vaccin Immunother

a Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology , Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Harbin , PR China.

Published: September 2017

The use of antibiotics to target bacteria is a well-validated approach for controlling infections in animals and humans. Peptidoglycan biosynthesis is a crucial process in bacteria, and the conserved peptidoglycan synthase MraY is an attractive target for drug design. However, due to the lack of detailed MraY structural information, antibiotics targeting MraY have not yet been developed. In the present study, 2 hydrophilic regions of MraY from Escherichia coli were expressed as a fusion protein and used to raise a monoclonal antibody in mice. We confirmed that the MraY amino acid sequence PESHFSKRGTPT forms the core epitope recognized by the monoclonal antibody M-H11. Furthermore, our results show that M-H11 effectively controls Escherichia coli BL21 (DE3) plysS infection, both in vitro and in vivo. Our results may be of great value in the search for novel approaches used to control bacterial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5612219PMC
http://dx.doi.org/10.1080/21645515.2017.1337613DOI Listing

Publication Analysis

Top Keywords

monoclonal antibody
12
peptidoglycan synthase
8
synthase mray
8
escherichia coli
8
mray
6
targeting gram-negative
4
gram-negative bacteria
4
bacteria peptidoglycan
4
mray approach
4
approach monoclonal
4

Similar Publications

Parainfluenza virus 3 (PIV3) infection poses a substantial risk to vulnerable groups including infants, the elderly, and immunocompromised individuals, and lacks effective treatments or vaccines. This study focuses on targeting the hemagglutinin-neuraminidase (HN) protein, a structural glycoprotein of PIV3 critical for viral infection and egress. With the objective of targeting these activities of HN, we identified eight neutralizing human monoclonal antibodies (mAbs) with potent effects on viral neutralization, cell-cell fusion inhibition, and complement deposition.

View Article and Find Full Text PDF

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Zika virus (ZIKV) infection can result in a birth defect of the brain called microcephaly and other severe fetal brain defects. ZIKV enters the susceptible host cells by endocytosis, which is mediated by the interaction of the envelope (E) glycoprotein with cellular surface receptor molecules. However, the cellular factors that used by the ZIKV to gain access to host cells remains elusive.

View Article and Find Full Text PDF

Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages.

Nat Commun

December 2024

Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.

The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages.

View Article and Find Full Text PDF

Glioblastoma is immunologically "cold" and resistant to single-agent immune-checkpoint inhibitors (ICI). Our previous study of neoadjuvant pembrolizumab in surgically-accessible recurrent glioblastoma identified a molecular signature of response to ICI and suggested that neoadjuvant pembrolizumab may improve survival. To increase the power of this observation, we enrolled an additional 25 patients with a primary endpoint of evaluating the cell cycle gene signature associated with neoadjuvant pembrolizumab and performed bulk-RNA seq on resected tumor tissue (NCT02852655).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!