Long accepted as the most important interaction, recent work shows that steric repulsions alone cannot explain the effects of macromolecular cosolutes on the equilibrium thermodynamics of protein stability. Instead, chemical interactions have been shown to modulate, and even dominate, crowding-induced steric repulsions. Here, we use F NMR to examine the effects of small and large cosolutes on the kinetics of protein folding and unfolding using the metastable 7 kDa N-terminal SH3 domain of the Drosophila signaling protein drk (SH3), which folds by a two-state mechanism. The small cosolutes consist of trimethylamine N-oxide and sucrose, which increase equilibrium protein stability, and urea, which destabilizes proteins. The macromolecules comprise the stabilizing sucrose polymer, Ficoll, and the destabilizing globular protein, lysozyme. We assessed the effects of these cosolutes on the differences in free energy between the folded state and the transition state and between the unfolded ensemble and the transition state. We then examined the temperature dependence to assess changes in activation enthalpy and entropy. The enthalpically mediated effects are more complicated than suggested by equilibrium measurements. We also observed enthalpic effects with the supposedly inert sucrose polymer, Ficoll, that arise from its macromolecular nature. Assessment of activation entropies shows important contributions from solvent and cosolute, in addition to the configurational entropy of the protein that, again, cannot be gleaned from equilibrium data. Comparing the effects of Ficoll to those of the more physiologically relevant cosolute lysozyme reveals that synthetic polymers are not appropriate models for understanding the kinetics of protein folding in cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982521 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.7b03786 | DOI Listing |
Front Immunol
January 2025
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Donor-specific antibodies (DSAs) targeting mismatched human leukocyte antigen (HLA) molecules are one of the principal threats to long-term graft survival in solid organ transplantation. However, many patients with long-term circulating DSAs do not manifest rejection responses, suggesting a degree of heterogeneity in their pathogenicity and related functional activity. Immunologic risk stratification of transplant recipients is complicated by challenges intrinsic to defining alloantibody responses that are potentially pathogenic versus those that are not.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
School of Basic Medical Science, Jining Key Laboratory of Pharmacology, Jining Medical University, Jining, Shandong, China.
Sensorineural hearing loss (SNHL) is characterized by a compromised cochlear perception of sound waves. Major risk factors for SNHL include genetic mutations, exposure to noise, ototoxic medications, and the aging process. Previous research has demonstrated that inflammation, oxidative stress, apoptosis, and autophagy, which are detrimental to inner ear cells, contribute to the pathogenesis of SNHL; however, the precise mechanisms remain inadequately understood.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Suzhou 215006, Jiangsu Province, China.
Objective: To study the molecular mechanism of functional defect of protein C (PC) caused by point mutations of human protein C gene ( ) N355S , G392E and T314A.
Methods: The wild-type and mutant plasmids (PC, PC, PC, PC) of gene were constructed and transiently transfected into HEK293 cells. The expression of mutant proteins in vitro were tested.
Int J Biol Macromol
December 2024
Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation. Electronic address:
Ferritin-based hybrids are large 24-subunit macromolecules of megadalton scale have prospective applications ranging from drug delivery to recombinant vaccines, however, their rational design is challenging. Here, we architectured hybrids based on ferritin subunits from Helicobacter pylori and ones fused with a homolog of the Small Ubiquitin-like Modifier protein. We firstly revealed the stochastic nature of bacterial ferritin-based hybrids self-assembly by observing a sequential range of stoichiometries at totally different sample preparation procedures: coexpression in Escherichia coli cells and pH-dependent dis/reassembly.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:
N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!