Si-like mechanisms, which involve front-face leaving group departure and nucleophile approach, have been observed experimentally and computationally in chemical and enzymatic substitution at α-glycosyl electrophiles. Since Si-like, S1 and S2 substitution pathways can be energetically comparable, engineered switching could be feasible. Here, engineering of Sulfolobus solfataricus β-glycosidase, which originally catalyzed double S2 substitution, changed its mode to Si-like. Destruction of the first S2 nucleophile through E387Y mutation created a β-stereoselective catalyst for glycoside synthesis from activated substrates, despite lacking a nucleophile. The pH profile, kinetic and mutational analyses, mechanism-based inactivators, X-ray structure and subsequent metadynamics simulations together suggest recruitment of substrates by π-sugar interaction and reveal a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape for the substitution reaction that is similar to those of natural, Si-like glycosyltransferases. This observation of a front-face mechanism in a β-glycosyltransfer enzyme highlights that Si-like pathways may be engineered in catalysts with suitable environments and suggests that 'β-Si' mechanisms may be feasible for natural glycosyltransfer enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchembio.2394 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!