Eight different types of nanostructured perovskites based on YCoO 3 with different chemical compositions are prepared as gas sensor materials, and they are studied with two target gases NO 2 and CO. Moreover, a statistical approach is adopted to optimize their performance. The innovative contribution is carried out through a split-plot design planning and modeling, also involving random effects, for studying Metal Oxide Semiconductors (MOX) sensors in a robust design context. The statistical results prove the validity of the proposed approach; in fact, for each material type, the variation of the electrical resistance achieves a satisfactory optimized value conditional to the working temperature and by controlling for the gas concentration variability. Just to mention some results, the sensing material YCo 0 . 9 Pd 0 . 1 O 3 (Mt1) achieved excellent solutions during the optimization procedure. In particular, Mt1 resulted in being useful and feasible for the detection of both gases, with optimal response equal to +10.23% and working temperature at 312 ∘ C for CO (284 ppm, from design) and response equal to -14.17% at 185 ∘ C for NO 2 (16 ppm, from design). Analogously, for NO 2 (16 ppm, from design), the material type YCo 0 . 9 O 2 . 85 + 1 % Pd (Mt8) allows for optimizing the response value at - 15 . 39 % with a working temperature at 181 . 0 ∘ C, whereas for YCo 0 . 95 Pd 0 . 05 O 3 (Mt3), the best response value is achieved at - 15 . 40 % with the temperature equal to 204 ∘ C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5492705 | PMC |
http://dx.doi.org/10.3390/s17061352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!