Micelles prepared from amphiphilic block copolymers (ABCs) have found numerous applications in pharmaceutical, electronics, environmental, cosmetics, and hygiene industries. These micelles, whether in the pure or mixed micelle form, often exist as multiple morphologies (spherical, cylindrical, worm, or vesicular) in equilibrium with each other. However, none of the current column-based fractionation techniques or any microscopic technique are capable of a successful separation, identification, and quantitation of these complex self-assemblies with regards to morphology, size, molar mass, and chemical composition in one experiment. Multidetector thermal field-flow fractionation (ThFFF) is shown to be capable of separating and characterizing not only pure micelles but also mixed micelles prepared from polystyrene-poly(ethylene oxide) ABCs. In addition, multidetector ThFFF is demonstrated to be capable of successfully characterizing multiple micellar morphological evolutions (induced by the addition of an electrolyte) and thus showcasing the potential of this novel approach to monitor the formation of polymer self-assemblies with multiple and complex morphological distributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.7b01445 | DOI Listing |
J Chem Phys
January 2025
Department of Physics and Materials Science, The University of Memphis, Memphis, Tennessee 38152, USA.
The adhesion of nanoparticles to lipid vesicles causes curvature deformations to the membrane to an extent determined by the competition between the adhesive interaction and the membrane's elasticity. These deformations can extend over length scales larger than the size of a nanoparticle, leading to an effective membrane-curvature-mediated interaction between nanoparticles. Nanoparticles with uniform surfaces tend to aggregate into unidimensionally close-packed clusters at moderate adhesion strengths and endocytose at high adhesion strengths.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.
Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis.
View Article and Find Full Text PDFMolecules
December 2024
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Nanomaterials Laboratory, Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 007, India.
Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.
View Article and Find Full Text PDFChem Asian J
November 2024
Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
Donor-acceptor in linear π-conjugated systems elicits the intramolecular charge transfer which improves the optical and electronic characteristics. Nevertheless, linear arrangement of electron donor and acceptor finely tune the charge or electron transfer process divulges the device performance. Therefore, molecular engineering of appropriate D-A with precise spacer is indeed challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!