AI Article Synopsis

  • Prostaglandin E (PGE) plays a crucial role in driving inflammation in arthritic conditions, necessitating the use of inhibitors like NSAIDs and Coxibs for treatment, which can cause significant side effects.
  • Researchers aim to find new EP4 antagonists that target inflammation and autoimmunity associated with PGE, potentially offering a safer alternative to traditional treatments.
  • Several novel EP4 antagonists have been discovered through various in vitro assays, demonstrating selectivity and potency, and have shown effectiveness in animal models for treating pain, inflammation, and arthritis.

Article Abstract

Prostaglandin (PG) E is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE are transduced through various receptor sub-types. Prostaglandin E type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464344PMC
http://dx.doi.org/10.1002/prp2.316DOI Listing

Publication Analysis

Top Keywords

selective potent
8
nsaids coxibs
8
novel ep4
8
ep4 antagonists
8
analgesic anti-inflammatory
4
anti-inflammatory properties
4
properties novel
4
novel selective
4
ep4
4
potent ep4
4

Similar Publications

Antibody-mediated rejection (AMR) remains a major complication after solid organ transplantation (SOT). Current treatment options are inefficient and result in drastic impairment of the general immunity. To selectively eliminate responsible alloreactive B cells characterized by anti-donor-HLA B-cell receptors (BCRs), we generated T cells overcoming rejection by antibodies (CORA-Ts) engineered with a novel chimeric receptor comprising a truncated donor-HLA molecule as antigen recognition domain.

View Article and Find Full Text PDF

Lipoprotein(a) [Lp(a)] is a lipoprotein with potent atherogenic and thrombogenic potential. Its role in patients with acute coronary syndrome (ACS) combined with three-vessel disease (TVD) remains unclear. This study aimed to investigate the correlation between Lp(a) levels and the occurrence of major adverse cardiovascular events (MACE) in patients with ACS combined with TVD.

View Article and Find Full Text PDF

Background: Dermatomyositis is a chronic autoimmune disease with distinctive cutaneous eruptions and muscle weakness, and the pathophysiology is characterised by type I interferon (IFN) dysregulation. This study aims to assess the efficacy, safety, and target engagement of dazukibart, a potent, selective, humanised IgG1 neutralising monoclonal antibody directed against IFNβ, in adults with moderate-to-severe dermatomyositis.

Methods: This multicentre, double-blind, randomised, placebo-controlled, phase 2 trial was conducted at 25 university-based hospitals and outpatient sites in Germany, Hungary, Poland, Spain, and the USA.

View Article and Find Full Text PDF
Article Synopsis
  • FT596 is a novel cancer therapy using iPSC-derived CAR NK cells targeting CD19, designed to assess its safe dosage and effectiveness alone and with rituximab in patients with B-cell lymphoma.
  • This phase 1 trial involved patients with relapsed or refractory B-cell lymphoma, administering FT596 after chemotherapy, with separate regimens for those receiving rituximab and those who did not.
  • The study measured potential side effects while determining the optimal dose of FT596 and allowed modifications to the treatment based on patient tolerance and response.
View Article and Find Full Text PDF

Human α10 nicotinic acetylcholine receptor subunits assemble to form functional receptors.

J Biol Chem

January 2025

School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA; Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah, USA.

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. In mammals, there are 16 individual nAChR subunits allowing for numerous possible heteromeric compositions. nAChRs assembled from α7 or α9 subunits will form as homopentamers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!