Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background noise in cluster analyses can potentially mask the true underlying patterns. To tease out patterns uniquely to certain populations, a Bayesian semi-parametric clustering method is presented. It infers and adjusts background noise. The method is built upon a mixture of the Dirichlet process and a point mass function. Simulations demonstrate the effectiveness of the proposed method. The method is then applied to analyze a longitudinal data set on allergic sensitization and asthma status.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464744 | PMC |
http://dx.doi.org/10.1016/j.csda.2016.11.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!