Effect of Biochar Amendment and Ageing on Adsorption and Degradation of Two Herbicides.

Water Air Soil Pollut

Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU), Box 7015, 750 07 Uppsala, Sweden.

Published: May 2017

Biochar amendment can alter soil properties, for instance, the ability to adsorb and degrade different chemicals. However, ageing of the biochar, due to processes occurring in the soil over time, can influence such biochar-mediated effects. This study examined how biochar affected adsorption and degradation of two herbicides, glyphosate (N-(phosphonomethyl)-glycine) and diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) in soil and how these effects were modulated by ageing of the biochar. One sandy and one clayey soil that had been freshly amended with a wood-based biochar (0, 1, 10, 20 and 30% /) were studied. An ageing experiment, in which the soil-biochar mixtures were aged for 3.5 months in the laboratory, was also performed. Adsorption and degradation were studied in these soil and soil-biochar mixtures, and compared to results from a soil historically enriched with charcoal. Biochar amendment increased the pH in both soils and increased the water-holding capacity of the sandy soil. Adsorption of diuron was enhanced by biochar amendment in both soils, while glyphosate adsorption was decreased in the sandy soil. Ageing of soil-biochar mixtures decreased adsorption of both herbicides in comparison with freshly biochar-amended soil. Herbicide degradation rates were not consistently affected by biochar amendment or ageing in any of the soils. However, glyphosate half-lives correlated with the Freundlich Kf values in the clayey soil, indicating that degradation was limited by availability there.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443863PMC
http://dx.doi.org/10.1007/s11270-017-3392-7DOI Listing

Publication Analysis

Top Keywords

biochar amendment
20
adsorption degradation
12
soil-biochar mixtures
12
soil
10
biochar
9
amendment ageing
8
degradation herbicides
8
ageing biochar
8
clayey soil
8
sandy soil
8

Similar Publications

Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.

View Article and Find Full Text PDF

Introduction: Response to fertilization with biochar in contaminated soils for forage crops lacks comprehensive understanding. This study delves into the role of biochar in enhancing soil pH and phosphorus (P) and potassium (K) availability for ryegrass () in clay and silt loam metal-contaminated soils.

Methods: Two pot experiments were conducted using switchgrass-derived biochar (SGB) and poultry litter-derived biochar (PLB) with varying biochar application rates: one without plants and the other with ryegrass.

View Article and Find Full Text PDF

Enhancing indigenous plant growth in metal(loid) contaminated soil using biochar.

Chemosphere

January 2025

Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea. Electronic address:

Soil around mines contaminated with metal(loid) is not suitable for growing plants and it is necessary to select indigenous plants with tolerance for metal(loid) and ameliorate metal toxicity in soil using soil amendments. Therefore, the purpose of this study was to improve the soil environment to make it suitable for plant growth by treating chicken manure derived-biochar in soil contaminated with arsenic (As), cadmium (Cd), and lead (Pb). Biochar application increased soil pH and significantly reduced bioavailable As, Cd and Pb, thereby lowering toxicity in plants.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!