De-identification of clinical narratives is one of the main obstacles to making healthcare free text available for research. In this paper we describe our experience in expanding and tailoring two existing tools as part of the 2016 CEGS N-GRID Shared Tasks Track 1, which evaluated de-identification methods on a set of psychiatric evaluation notes for up to 25 different types of Protected Health Information (PHI). The methods we used rely on machine learning on either a large or small feature space, with additional strategies, including two-pass tagging and multi-class models, which both proved to be beneficial. The results show that the integration of the proposed methods can identify Health Information Portability and Accountability Act (HIPAA) defined PHIs with overall F-scores of ∼90% and above. Yet, some classes (Profession, Organization) proved again to be challenging given the variability of expressions used to reference given information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705401 | PMC |
http://dx.doi.org/10.1016/j.jbi.2017.06.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!