The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5546232 | PMC |
http://dx.doi.org/10.1016/j.cub.2017.05.046 | DOI Listing |
Dev Sci
March 2025
Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
Newborns are able to neurally discriminate between speech and nonspeech right after birth. To date it remains unknown whether this early speech discrimination and the underlying neural language network is associated with later language development. Preterm-born children are an interesting cohort to investigate this relationship, as previous studies have shown that preterm-born neonates exhibit alterations of speech processing and have a greater risk of later language deficits.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Department of Education and Psychology, The Open University, 1 University Road, P.O. Box 808, 4353701, Ra'anana, Israel.
Visual perspective taking often involves transitioning between perspectives, yet the cognitive mechanisms underlying this process remain unclear. The current study draws on insights from task- and language-switching research to address this gap. In Experiment 1, 79 participants judged the perspective of an avatar positioned in various locations, observing either the rectangular or the square side of a rectangular cube hanging from the ceiling.
View Article and Find Full Text PDFSurg Endosc
January 2025
Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
Objectives: This study aimed to develop an automated skills assessment tool for surgical trainees using deep learning.
Background: Optimal surgical performance in robot-assisted surgery (RAS) is essential for ensuring good surgical outcomes. This requires effective training of new surgeons, which currently relies on supervision and skill assessment by experienced surgeons.
Sci Rep
January 2025
Department of Experimental Psychology, Ghent University, Ghent, Belgium.
How are arbitrary sequences of verbal information retained and manipulated in working memory? Increasing evidence suggests that serial order in verbal WM is spatially coded and that spatial attention is involved in access and retrieval. Based on the idea that brain areas controlling spatial attention are also involved in oculomotor control, we used eye tracking to reveal how the spatial structure of serial order information is accessed in verbal working memory. In two experiments, participants memorized a sequence of auditory words in the correct order.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Psychology, Lomonosov Moscow State University, Moscow, Russia.
Increased screen time (ST) among preschool children is becoming a matter of concern globally. Although gadgets such as phones, tablets and computers might be of educational use in this population, excessive ST might impair cognitive function among preschoolers. As data on this topic in preschool children are scarce, this study sought to investigate the relationship between ST and executive functions (EFs) in this population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!