Cancer cell molecular mimicry of stem cells (SC) follows with enhanced proliferative and renewal capacities. In support, numerous mediators of SC self-renewal have been evinced to exhibit oncogenic potential. More and more researches showed that the embryonic stem cell self-renewal genes express in various cancer cells. In this study, we sought to test the tumorigenic functions of NANOG, particularly, in esophageal cancer (EC). Using quantitative RT-PCR and western blotting, we confirmed that EC cells highly express NANOG mRNA and protein. We then constructed a shRNA-mediated plasmid to knockdown of NANOG mRNA. We observed that NANOG deficiency in Eca109 cells decreased clone formation, cell proliferation, and showed G1 arrest. To further investigate the functions and mechanisms of NANOG in Eca109 cells, we detected the changes of multiple signaling molecules when NANOG deficiency. We foud that NANOG deficiency affected multiple genes, particularly, supressed drug-resistance via down-regulated ABCG2 in Eca109 cells, and caused G1 arrest by down-regulated cyclin D1 (CCND1) expression. The present loss-of-function work, establish the integral role for NANOG in Eca109 cell proliferation, drug resistance, and shed light on its mechanisms of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.06.016 | DOI Listing |
Cancer Lett
December 2024
Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China. Electronic address:
Breast cancer stem cells (BCSCs) are the main cause of breast cancer recurrence and metastasis. While the ubiquitin-proteasome system contributes to the regulation of BCSC stemness, the underlying mechanisms remain unclear. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a pivotal ubiquitin enzyme regulating BCSC stemness through systemic screening assays, including single-cell RNA sequencing (scRNA-seq) and stemness-index analysis.
View Article and Find Full Text PDFJ Cell Physiol
October 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
Cancer stem cells (CSCs) are considered the major cause of the occurrence, progression, chemoresistance/radioresistance, recurrence, and metastasis of cancer. Increased interstitial fluid pressure (IFP) is a key feature of solid tumors. Our previous study showed that the distribution of liver cancer stem cells (LCSCs) correlated with the mechanical heterogeneity within liver cancer tissues.
View Article and Find Full Text PDFBiol Reprod
November 2024
Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
bioRxiv
July 2024
Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Dev Biol
July 2024
Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA. Electronic address:
Early embryonic development is a finely orchestrated process that requires precise regulation of gene expression coordinated with morphogenetic events. TATA-box binding protein-associated factors (TAFs), integral components of transcription initiation coactivators like TFIID and SAGA, play a crucial role in this intricate process. Here we show that disruptions in TAF5, TAF12 and TAF13 individually lead to embryonic lethality in the mouse, resulting in overlapping yet distinct phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!