Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu.

Environ Sci Pollut Res Int

Microbial Processes and Interactions Laboratory, Faculty Gembloux Agro-BioTech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium.

Published: October 2018

In the province of South Kivu (Democratic Republic of Congo), warm and humid climatic conditions favor the development and spreading of phytopathogens. The resulting diseases cause important losses in production both in crop and after harvest. In this study, we wanted to evaluate the potential of Bacillus amyloliquefaciens as biocontrol agent to fight some newly isolated endemic fungal pathogens infesting maize. The strain S499 has been selected based on its high in vitro antagonistic activity correlating with a huge potential to secrete fungitoxic lipopeptides upon feeding on maize root exudates. Biocontrol activity of S499 was further tested on infected plantlets in growth chamber and on plants grown under field conditions over an entire cropping period. We observed a strong protective effect of this strain evaluated at two different locations with specific agro-ecological conditions. Interestingly, disease protection was associated with higher yields and our data strongly suggest that, in addition to directly inhibit pathogens, the strain may also act as biofertilizer through the solubilization of phosphorus and/or by producing plant growth hormones in the rhizosphere. This work supports the hope of exploiting such technologically advantageous bacilli for the sake of sustainable local production of this important crop in central Africa.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-9314-9DOI Listing

Publication Analysis

Top Keywords

bacillus amyloliquefaciens
8
amyloliquefaciens biocontrol
8
biocontrol agent
8
agent fight
8
south kivu
8
production crop
8
efficacy bacillus
4
fight fungal
4
fungal diseases
4
diseases maize
4

Similar Publications

Cell-to-Cell Natural Transformation Mediated Efficient Plasmid Transfer Between Species.

Int J Mol Sci

January 2025

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Horizontal gene transfer (HGT) plays a pivotal role in bacterial evolution, shaping the genetic diversity of bacterial populations. It can occur through mechanisms such as conjugation, transduction, and natural transformation. , a model Gram-positive bacterium, serves not only as a robust system for studying HGT but also as a versatile organism with established industrial applications, such as producing industrial enzymes, antibiotics, and essential metabolites.

View Article and Find Full Text PDF

Integrated multi-omics reveals the Bacillus amyloliquefaciens BA40 against Clostridium perfringens infection in weaned piglets.

J Adv Res

January 2025

Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Key Laboratory of Animal Nutrition and Feed, Ministry of Agricultural and Rural Affairs, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; National Engineering Research Center of Green Feeds and Healthy Livestock Industry, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; Zhejiang Key Laboratory of Nutrition and Breeding for High-quality Animal Products, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China; College of Animal Science, Institute of Feed Science, Zhejiang University, 866 Yuhang Tang Road, Hangzhou, Zhejiang 310058, China. Electronic address:

Introduction: Clostridium perfringens (C. perfringens) can cause necrotic enteritis and higher mortality rates in piglets, by impairing the intestinal barrier function. Bacillus amyloliquefaciens 40 (BA40) has showed potential ability to reduce C.

View Article and Find Full Text PDF

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

Effect of microbial fertilizers on soil microbial community structure in rotating and continuous cropping .

Front Plant Sci

January 2025

Science and Technology R&D Department, China Chinese Medicine Co., LTD, Beijing, China.

Introduction: is a perennial medicinal plant. It's generally cultivated for three years, and should avoid long-term continuous cultivation. However, unreasonable crop rotation and extensive fertilization are common in cultivation, which leads to the imbalance of soil microflora structure, and the obstacle of continuous cropping are becoming increasingly serious.

View Article and Find Full Text PDF

Bacterial levans are biopolymers composed of fructose units linked by β-2,6 glycosidic bonds that are degradable, nontoxic and flexible, representing a green technology with significant applications across various industries. Fermented soybeans are a common source of bacteria-producing polysaccharides. In this study, KKSB4, KKSB6 and KKSB7 isolated from traditionally fermented soybean (Thua-nao), along with strain 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!