The Jiaosi Hot Spring Region is one of the most famous tourism destinations in Taiwan. The spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Moreover, the multipurpose uses of spring water can be dictated by the temperature of the water. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by integrating ordinary kriging (OK), sequential Gaussian simulation (SGS), and Geographic information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial uncertainty and distributions of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined using GIS and combined with the estimated distributions of the spring water temperatures. A suitable development strategy for the multipurpose uses of spring water is proposed according to the integration of the land use and spring water temperatures. The study results indicate that the integration of OK, SGS, and GIS is capable of characterizing spring water temperatures and the suitability of multipurpose uses of spring water. SGS realizations are more robust than OK estimates for characterizing spring water temperatures compared to observed data. Furthermore, current land use is almost ideal in the Jiaosi Hot Spring Region according to the estimated spatial pattern of spring water temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-017-6029-9 | DOI Listing |
Plant Dis
January 2025
USDA-ARS North Central Agricultural Research Laboratory, Brookings, South Dakota, United States;
Soilborne diseases are persistent problems in soybean production. Long-term crop rotation can contribute to soilborne disease management. However, the response of soilborne pathogens to crop rotation is inconsistent, and rotation efficacy is highly variable.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.
View Article and Find Full Text PDFJ Eukaryot Microbiol
January 2025
Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
The globally distributed ciliate Balanion planctonicum is a primary consumer of phytoplankton spring blooms. Due to its small size (~20 μm), identification and quantification by molecular tools is preferable as an alternative to the laborious counting of specimen in quantitative protargol stains. However, previous sequencing of the 18S rDNA V9 region of B.
View Article and Find Full Text PDFThis study, conducted between June 2022 and March 2023 in Dhaka, examined prevalence in 874 samples from vegetables, vegetable wash water, and hand swabs from vendors during summer and winter. Of the total samples, 782 (89.50%) tested positive for , with 95.
View Article and Find Full Text PDFMany sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!