Importin-β and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function.

J Cell Sci

CNR National Research Council of Italy, Institute of Molecular Biology and Pathology (IBPM), ℅ Department of Biology and Biotechnology, Sapienza Università di Roma, Via degli Apuli 4, 00185 Rome, Italy

Published: August 2017

Protein conjugation with small ubiquitin-related modifier (SUMO) is a post-translational modification that modulates protein interactions and localisation. RANBP2 is a large nucleoporin endowed with SUMO E3 ligase and SUMO-stabilising activity, and is implicated in some cancer types. RANBP2 is part of a larger complex, consisting of SUMO-modified RANGAP1, the GTP-hydrolysis activating factor for the GTPase RAN. During mitosis, the RANBP2-SUMO-RANGAP1 complex localises to the mitotic spindle and to kinetochores after microtubule attachment. Here, we address the mechanisms that regulate this localisation and how they affect kinetochore functions. Using proximity ligation assays, we find that nuclear transport receptors importin-β and CRM1 play essential roles in localising the RANBP2-SUMO-RANGAP1 complex away from, or at kinetochores, respectively. Using newly generated inducible cell lines, we show that overexpression of nuclear transport receptors affects the timing of RANBP2 localisation in opposite ways. Concomitantly, kinetochore functions are also affected, including the accumulation of SUMO-conjugated topoisomerase-IIα and stability of kinetochore fibres. These results delineate a novel mechanism through which nuclear transport receptors govern the functional state of kinetochores by regulating the timely deposition of RANBP2.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.197905DOI Listing

Publication Analysis

Top Keywords

nuclear transport
12
transport receptors
12
importin-β crm1
8
ranbp2-sumo-rangap1 complex
8
kinetochore functions
8
ranbp2
5
crm1 control
4
control ranbp2
4
ranbp2 spatiotemporal
4
spatiotemporal switch
4

Similar Publications

Marine and atmospheric transport modeling supporting nuclear preparedness in Norway: Recent achievements and remaining challenges.

Sci Total Environ

January 2025

Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.

Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.

View Article and Find Full Text PDF

Background: A growing amount of data has implicated the various roles of nuclear genes involved in mitochondrial function, and mitochondrial genes, on risk for Alzheimer's disease (AD) and AD neuroimaging biomarkers. To date, no studies have investigated the relationship of mitochondrial haplogroups or the APOE and TOMM40 genes on brain glucose metabolism, a sensitive early marker of metabolic decline and possible mitochondrial dysfunction in AD.

Method: We analyzed regional standard uptake value ratio (SUVR) differences in F-fluorodeoxyglucose positron emission tomography (FDG-PET) using SPM12 and CAT12 software between nondemented (ND, n=69), mild cognitively impaired (MCI, n=19) and AD (n=18) groups in a sample of individuals from the University of Kansas Alzheimer's Disease Research Center Cohort, controlling for age, sex, and education.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

University of California, Los Angeles, Los Angeles, CA, USA.

Background: Alzheimer's Disease (AD) is a chronic, incurable neurodegenerative condition characterized by extensive systemic, cellular, and molecular abnormalities. One such aspect recent studies have highlighted is the reduction in plasma branched-chain amino acid (BCAA) concentrations, identifying them as a potential emerging marker for the disease. Although BCAAs have been implicated in the pathogenesis of AD, their utility in clinical prognosis remains unexplored.

View Article and Find Full Text PDF

Background: A growing amount of data has implicated the various roles of nuclear genes involved in mitochondrial function, and mitochondrial genes, on risk for Alzheimer's disease (AD) and AD neuroimaging biomarkers. To date, no studies have investigated the relationship of mitochondrial haplogroups or the APOE and TOMM40 genes on brain glucose metabolism, a sensitive early marker of metabolic decline and possible mitochondrial dysfunction in AD.

Method: We analyzed regional standard uptake value ratio (SUVR) differences in 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) using SPM12 and CAT12 software between nondemented (ND, n = 69), mild cognitively impaired (MCI, n = 19) and AD (n = 18) groups in a sample of individuals from the University of Kansas Alzheimer's Disease Research Center Cohort, controlling for age, sex, and education.

View Article and Find Full Text PDF

Background: ABCA1-mediated cholesterol transport is a central feature in many lipid- dependent diseases including APOE4-associated Alzheimer's disease and atherosclerosis-CVD. ABCA1 upregulation of RNA transcription by nuclear factors (LXR, RXR) have been associated with liver side-effects because of the common promotor element for ABCA1 and Fatty Acid Synthase. The ABCA1 agonist CS6253, derived from the C-terminal of apoE was designed to stabilize and enhance ABCA1 function, thereby providing a safe alternative to transcriptional upregulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!