A novel combination adjuvant platform for human and animal vaccines.

Vaccine

Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada. Electronic address:

Published: August 2017

Adjuvants are crucial components of many vaccines. They are used to improve the immunogenicity of vaccines with the aim of conferring long-term protection, to enhance the efficacy of vaccines in newborns, elderly or immunocompromised persons, and to reduce the amount of antigen or the number of doses required to elicit effective immunity. Novel combination adjuvants have been tested in both candidate animals and humans vaccines and have generated encouraging results. Recently, we developed a combination adjuvant platform (TriAdj) comprising of three components, namely a TLR agonist, either polyI:C or CpG oligodeoxynucleotides (ODN), host defense peptide and polyphosphazene. This adjuvant platform is stable and highly effective in a wide range of animal and human vaccines tested in mice, cotton rats, pigs, sheep, and koalas. TriAdj with various vaccines antigens induced effective long-term humoral and cellular immunity. Moreover, the adjuvant platform is suitable for maternal immunization and highly effective in neonates even in the presence of maternal antibodies. This novel vaccine platform, offers excellent opportunity for use in present and future generations of vaccines against multiple infectious agents and targets challenging populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2017.05.067DOI Listing

Publication Analysis

Top Keywords

adjuvant platform
16
novel combination
8
combination adjuvant
8
vaccines
8
highly effective
8
platform
5
adjuvant
4
platform human
4
human animal
4
animal vaccines
4

Similar Publications

Objective: Vaccinated patients with cancer in follow-up studies showed a high seropositivity rate but impaired antibody titres and T cell responses following mRNA vaccine against COVID-19. Besides clinical characteristics and the type of anticancer treatment before vaccination, the identification of patients susceptible to non-response following vaccination using immunological markers is worth to be investigated.

Methods And Analysis: All patients (n=138, solid cancers) were included in the CACOV-VAC Study comprising three cohorts ((neo)-adjuvant, metastatic and surveillance).

View Article and Find Full Text PDF

Clinical endpoints, such as overall survival, directly measure relevant outcomes. Surrogate endpoints, in contrast, are intermediate, stand-in measures of various tumour-related metrics and include tumour growth, tumour shrinkage, blood results, etc. Surrogates may be a time point measurement, that is, tumour shrinkage at some point (eg, response rate) or biomarker-assessed disease status, measured at given time points (eg, circulating tumour DNA, ctDNA).

View Article and Find Full Text PDF

Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.

View Article and Find Full Text PDF

Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity.

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!