Background: The innate immune system is known to be involved early in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. The inflammatory response in the central nervous system can be measured postmortem or through a series of inflammatory mediator surrogates. YKL-40 (also named Chitinase-3-like I) has been frequently investigated in body fluids as a surrogate marker of neuroinflammation in AD and other neurological disorders. However, the expression pattern of YKL-40 in the human brain with neurodegenerative pathology remains poorly investigated. Our aim was to study the cellular expression pattern of YKL-40 in the brain of patients with clinical and neuropathological criteria for AD (n = 11); three non-AD tauopathies: Pick's disease (PiD; n = 8), corticobasal degeneration (CBD; n = 8) and progressive supranuclear palsy (PSP; n = 9) and a group of neurologically healthy controls (n = 6).
Methods: Semiquantitative neuropathological evaluation and quantitative confocal triple immunofluorescence studies were performed. An in-house algorithm was used to detect and quantify pathology burden of random regions of interest on a full tissue-section scan. Kruskal-Wallis and Dunn's multiple comparison tests were performed for colocalization and quantification analyses.
Results: We found that brain YKL-40 immunoreactivity was observed in a subset of astrocytes in all four diseases and in controls. There was a strong colocalization between YKL-40 and the astroglial marker GFAP but not with neuronal nor microglial markers. Intriguingly, YKL-40-positive astrocytes were tau-negative in PSP, CBD and PiD. The number of YKL-40-positive astrocytes was increased in tauopathies compared with that in controls. A positive correlation was found between YKL-40 and tau immunoreactivities.
Conclusions: This study confirms that YKL-40 is expressed by a subset of astrocytes in AD and other tauopathies. YKL-40 expression is elevated in several neurodegenerative conditions and correlates with tau pathology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466718 | PMC |
http://dx.doi.org/10.1186/s12974-017-0893-7 | DOI Listing |
Biomedicines
December 2024
Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary.
Background: N-methyl-D-aspartate type glutamate receptors (NMDARs) are fundamental to neuronal physiology and pathophysiology. The prefrontal cortex (PFC), a key region for cognitive function, is heavily implicated in neuropsychiatric disorders, positioning the modulation of its glutamatergic neurotransmission as a promising therapeutic target. Our recently published findings indicate that AT receptor activation enhances NMDAR activity in layer V pyramidal neurons of the rat PFC.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.
Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.
View Article and Find Full Text PDFNature
January 2025
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFGlia
December 2024
Department of Neurology and Alzheimer Centre Erasmus MC, Erasmus MC University Medical Center, Rotterdam, the Netherlands.
A subpopulation of astrocytes expressing WD Repeat Domain 49 (WDR49) was recently identified in frontotemporal lobar degeneration (FTLD) with GRN pathogenic variants. This is the first study to investigate their expression and relation to pathology in other FTLD subtypes and Alzheimer's disease (AD). In a postmortem cohort of TDP-43 proteinopathies (12 GRN, 11 C9orf72, 9 sporadic TDP-43), tauopathies (13 MAPT, 8 sporadic tau), 10 AD, and four controls, immunohistochemistry and immunofluorescence were performed for WDR49 and pathological inclusions on frontal, temporal, and occipital cortical sections.
View Article and Find Full Text PDFFluids Barriers CNS
December 2024
Department of Chemical Engineering and Materials Science, Wayne State University, 6135 Woodward Avenue, Rm 1413, Detroit, MI, 48202, USA.
Background: Hydrocephalus, an accumulation of cerebrospinal fluid (CSF) in the ventricles of the brain, is often treated via a shunt system to divert the excess CSF to a different compartment; if left untreated, it can lead to serious complications and permanent brain damage. It is estimated that one in every 500 people are born with hydrocephalus. Despite more than 60 years of concerted efforts, shunts still have the highest failure rate of any neurological device requiring follow-up shunt revision surgeries and contributing to the $2 billion cost of hydrocephalus care in the US alone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!