Burn effects on soil properties associated to heat transfer under contrasting moisture content.

Sci Total Environ

Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior, University of Zaragoza, Crtra. Cuarte s/n, Huesca 22071, Spain.

Published: December 2017

The aim of this work is to investigate the topsoil thickness affected by burning under contrasting soil moisture content (field capacity versus air-dried conditions). A mollic horizon of an Aleppo pine forest was sampled and burned in the laboratory, recording the temperature continuously at the topsoil surface and at soil depths of 1, 2, and 3cm. Changes in soil properties were measured at 0-1, 1-2, 2-3, and 3-4cm. Both the maximum temperature and the charring intensities were significantly lower in wet soils than in air-dried soils up to 3cm in depth. Moreover, soil heating was slower and cooling faster in wet soils as compared to dry soils. Therefore, the heat capacity increase of the soil moistened at field capacity plays a more important role than the thermal conductivity increase on heat transfer on burned soils. Burning did not significantly modify the pH, the carbonate content and the chroma, for either wet or dry soil. Fire caused an immediate and significant decrease in water repellency in the air-dried soil, even at 3cm depth, whereas the wet soil remained hydrophilic throughout its thickness, without being affected by burning. Burning depleted 50% of the soil organic C (OC) content in the air-dried soil and 25% in the wet soil at the upper centimeter, which was blackened. Burning significantly decreased the total N (TN) content only in the dry soil (to one-third of the original value) through the first centimeter of soil depth. Soluble ions, measured by electrical conductivity (EC), increased after burning, although only significantly in the first centimeter of air-dried soils. Below 2cm, burning had no significant effects on the brightness, OC, TN, or EC, for either wet or dry soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.05.254DOI Listing

Publication Analysis

Top Keywords

soil
15
dry soil
12
soil properties
8
heat transfer
8
moisture content
8
thickness burning
8
field capacity
8
wet soils
8
air-dried soils
8
3cm depth
8

Similar Publications

Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.

View Article and Find Full Text PDF

Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.

Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.

View Article and Find Full Text PDF

Efficient production system for hydrogel-based transparent soil for plant root observation.

Biotechniques

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

Observation of plant root morphology in soil is of fundamental importance in plant research, but the lack of transparency of the soil hampers direct observation of roots. One of the approaches to overcome this technical limitation is the use of "transparent soil" (TS), hydrogel-based beads produced by spherification of gelling agents. However, the production of TS by natural dripping of gelling solution can be labor intensive, time consuming and difficult to maintain consistent product quality.

View Article and Find Full Text PDF

Early leaf spot (ELS), caused by (syn. ), is a highly damaging peanut disease worldwide. While there are limited sources of resistance in cultivated peanut cultivars, wild relatives carry alleles for strong resistance, making them a valuable strategic resource for peanut improvement.

View Article and Find Full Text PDF

Excessive utilization of chemical fertilizers degrades the quality of medicinal plants and soil. Bio-organic fertilizers (BOFs) including microbial inoculants and microalgae have garnered considerable attention as potential substitutes for chemical fertilizer to enhance yield. In this study, a field experiment was conducted to investigate the effects of BOF partially substituting chemical fertilizer on the growth and quality of medicinal plant .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!