Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region.

Environ Pollut

Research Group and Teaching in Environmental Toxicology and Risk Assessment (TAyER) of Rey Juan Carlos University, Avda. Atenas S/N, E-28922 Alcorcón, Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health and Medical Microbiology and Immunology, Rey Juan Carlos University, Avda. Atenas s/n, E-28922 Alcorcón, Madrid, Spain. Electronic address:

Published: October 2017

Human presence in the Antarctic is increasing due to research activities and the rise in tourism. These activities contribute a number of potentially hazardous substances. The aim of this study is to conduct the first characterisation of the pharmaceuticals and recreational drugs present in the northern Antarctic Peninsula region, and to assess the potential environmental risk they pose to the environment. The study consisted of a single sampling of ten water samples from different sources, including streams, ponds, glacier drains, and a wastewater discharge into the sea. Twenty-five selected pharmaceuticals and 21 recreational drugs were analysed. The highest concentrations were found for the analgesics acetaminophen (48.74 μg L), diclofenac (15.09 μg L) and ibuprofen (10.05 μg L), and for the stimulant caffeine (71.33 μg L). All these substances were detected in waters that were discharged directly into the ocean without any prior purification processes. The hazard quotient (HQ) values for ibuprofen, diclofenac and acetaminophen were far in excess of 10 at several sampling points. The concentrations of each substance measured and used as measured environmental concentration values for the HQ calculations are based on a one-time sampling. The Toxic Unit values indicate that analgesics and anti-inflammatories are the therapeutic group responsible for the highest toxic burden. This study is the first to analyse a wide range of substances and to determine the presence of pharmaceuticals and psychotropic drugs in the Antarctic Peninsula region. We believe it can serve as a starting point to focus attention on the need for continued environmental monitoring of these substances in the water cycle, especially in protected regions such as the Antarctic. This will determine whether pharmaceuticals and recreational drugs are hazardous to the environment and, if so, can be used as the basis for risk-assessment studies to prioritise the exposure to risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2017.05.060DOI Listing

Publication Analysis

Top Keywords

antarctic peninsula
12
peninsula region
12
pharmaceuticals recreational
12
recreational drugs
12
northern antarctic
8
antarctic
5
occurrence pharmaceutical
4
recreational
4
pharmaceutical recreational
4
recreational psychotropic
4

Similar Publications

Per- and polyfluoroalkylated substances (PFAS) in the feathers and excreta of Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula.

Sci Total Environ

December 2024

Centro de Investigación para la Sustentabilidad (CIS-UNAB) & Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Av. Alemania 281, Temuco, Chile.

Per- and polyfluoroalkyl substances (PFAS) exhibit widespread global distribution, extending to remote regions including Antarctica. Despite potential adverse effects on seabirds, PFAS exposure among Antarctic penguins remains poorly studied. We investigated the occurrence of 29 PFAS compounds in feathers and excreta of Gentoo penguins (Pygoscelis papua) from Fildes Bay, Antarctica.

View Article and Find Full Text PDF

Predicting pack-ice seal occupancy of ice floes along the Western Antarctic Peninsula.

PLoS One

December 2024

Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America.

We explore the habitat use of Antarctic pack-ice seals by analyzing their occupancy patterns on pack-ice floes, employing a novel combination of segmented generalized linear regression and fine-scale (∼ 50 cm pixel resolution) sea ice feature extraction in satellite imagery. Our analysis of environmental factors identified ice floe size, fine-scale sea ice concentration and nearby marine topography as significantly correlated with seal haul out abundance. Further analysis between seal abundance and ice floe size identified pronounced shifts in the relationship between the number of seals hauled out and floe size, with a positive relationship up to approximately 50 m2 that diminishes for larger floe sizes and largely plateaus after 500 m2.

View Article and Find Full Text PDF

The Northern Antarctic Peninsula (NAP) and the West Antarctic Ice Sheet (WAIS) are likely to respond rapidly to climate changes by increasing the collapse of peripheral ice shelves and the number of days above 0 °C. These facts make this region a representative hotspot of the global sea level rise and the location of one of the global climate tipping points (thresholds in the Earth system whose changes may become irreversible, if exceeded). Understanding the climate evolution of the NAP, based on past evidences, may help infer its future scenario.

View Article and Find Full Text PDF

Marine microplastic is pervasive, polluting the remotest ecosystems including the Southern Ocean. Since this region is already undergoing climatic changes, the additional stress of microplastic pollution on the ecosystem should not be considered in isolation. We identify potential hotspot areas of ecological impact from a spatial overlap analysis of multiple data sets to understand where marine biota are likely to interact with local microplastic emissions (from ship traffic and human populations associated with scientific research and tourism).

View Article and Find Full Text PDF

Temporal variability in mortality and recruitment jointly influence the periodic fluctuations in Antarctic krill populations.

Mar Environ Res

December 2024

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; Polar Marine Ecosystem Group, The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China. Electronic address:

Antarctic krill (Euphausia superba) is a key part of the food web in the Southern Ocean ecosystem. Significant inter-annual fluctuations in population dynamics make stock assessment and management of its population a significant challenge. To better understand the population dynamics and fluctuation of krill, a survey-based age-structured catch-at-length model (ACL) is used to estimate the periodic fluctuations, based on length data collected from scientific surveys under the US Antarctic Marine Living Resources (AMLR) Program between 1992 and 2011.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!